
ADVANCED NUMERICAL METHODS 
Ordinary exam call, 21/5/2018. 

FULL ANSWERS / RESOLUTION 
Exercise 1 
Minimalistic answer (worth of full points): 
An osculating polynomial p(x) of f (x) is one that must coincide with f (x) on its values and a 
number of successive derivatives at the nodes: 
 ) )( ) ( ) , ( ) ( ) , ( ) ( ) , ..., ( ) ( ) ( 0,1,..., )i im m

i i i i i i i ip x f x p x f x p x f x p x f x i nc c cc cc      
   (1p) 
Calling ki = mi

 + 1 the number of conditions imposed on node xi, if a total of k = Σ ki condi-
tions are imposed, the error term can be proved to satisfy (assuming f �Ck):  
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More detailed explanations: 
Osculating polynomials1, like Lagrange interpolation polynomials, are also polynomials that 
must coincide with a given function f  (x) on a set of n + 1 nodes x0, x1, ..., xn; but, at least on 
one of them, there must be coincidence not only on the values of the functions, but also on a 
number of successive derivatives: 
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The order of differentiation mi does not need to coincide for all the nodes. 
Call ki the number of interpolation data used on node xi. That number is ki = mi

 + 1, since we 
use the values of f and of its first mi derivatives. The total number of interpolation data used 
will be noted k, so k = Σ ki (i = 0, …, n). In that case, it can be proved that the osculating poly-
nomial of degree k − 1 or less exists and is unique. 
For example, Hermite osculating polynomials have mi

 = 1 at all n + 1 nodes, where the oscu-
lating polynomial’s value and first derivative must coincide with those of f (x). The total num-
ber of conditions is k = 2(n + 1) = 2n + 2, and there will be one and only one polynomial of 
degree ≤ 2n + 1 satisfying those conditions. Similarly, Taylor polynomials (which are trun-
cated Taylor series expansions) have n = 0 (only one node) where p(x) and its derivatives until 
the m-th one must coincide with those of f. In this case the number of conditions used is 
k = m + 1 and the degree of the unique Taylor polynomial will be ≤ m. 
Osculating interpolation polynomials can be considered as a generalization of Lagrange poly-
nomials with nodes of multiplicity greater than 1 (“multiple nodes”), i.e., nodes that can be 
“infinitely close to one another” in such a way that they would define the value of a number 
of derivatives of f or of p on them. The corresponding tables of differences are called tables of 
divided differences with repetitions. If, for example, three conditions are used on node x0, it 
can be renamed (with repetitions) as z0, z1, z2; then if two conditions are used on node x1, it 

                                                 
1 The term “osculating” comes from Latin and means “kissing”, which is quite appropriate 
given the kind of close contact both functions, p and f, exhibit at the osculating points. 



can be renamed as z3, z4, etc. If there are k conditions overall, the set of all nodes can be re-
named as z0, z1, …, zk−1 (with some values being repeated). 
Divided dif lso be generalized to multiple or repeated noferences can a des, and in that case the 

:  
  e(x) = f (x) − p(x) = f [z0, z1, …, zk−1, x] Π(x) 

 term can also be proved to be of this general form: 

error term of the osculating polynomial p(x) can be written as
    

The error
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Exercise 2 
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Hence I will start by building a table of divided differences and see if removing one of the 
 a table with a constant column fi,3

 = 2. With the help of Octave (you should 
rs): 

[fii
tabl

pted the first four as correct). So I don’t actually calculate any more 
num i,3, and try to fill in 
the g

the value f5,0
 = 481. This 

can be easily done by hand, but there is a function called anm_fillinddr, available 
from the usual repository, that can do it for us. Here is how to use it: 

nodes produces
know how to calculate these numbe
clear 
format long 
xi = [0  1  3   4   5   6]; 
yi = [1  6 70 153  86 481]; 

, zi, table] = anm_tableddr(xi, yi); 
e                     % (some of the output suppressed) 
i   x_i   f_i,0   f_i,1   f_i,2   f_i,3   f_i,4   f_i,5 
0     0       1                                         
1     1       6       5                                 
2     3      70      32       9                         
3     4     153      83      17       2                 
4     5      86     -67     -75     -23       .         
5     6     481       .       .       .       .       . 

When doing this by hand, as soon as I find f3,3
 = 2 I accept the first four interpolation 

points (from which that number 2 stems) as correct; and as soon as I find  f4,3
 = −23 ≠ 2 

I discard the fifth ordinate, 86, as invalid (because that −23 stems from the first five interpola-
tion points, and I acce

bers. I leave them blank, discard the 86, add two more 2’s to column f
aps in this table: 
i   x_i   f_i,0   f_i,1   f_i,2   f_i,3   f_i,4   f_i,5 
0     0       1                                         
1     1       6       5                                 
2     3      70      32       9                         
3     4     153      83      17       2                 
4     5       .       .       .       2       0         
5     6     481       .       .       2       0       0 

It is possible to advance locally from the fi,3 constant column to the left, looking for triangles 
shaped : . where two of the three elements are known. If it is true that only one datum is 
incorrect, it should be possible to continue in this way and find again 
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T = table(:, 2:end);           % `table` from previous output 
T(5:6, 2:end) = NaN; 
T(5:end, 5) = 2 

T = 
     0     1   NaN   NaN   NaN   NaN   NaN 
     1     6     5   NaN   NaN   NaN   NaN 
     3    70    32     9   NaN   NaN   NaN 
     4   153    83    17     2   NaN   NaN 
     5   NaN   NaN   NaN     2   NaN   NaN 
     6   NaN   NaN   NaN     2   NaN   NaN 

anm_fillinddr(T)               % execute in Octave to see step-by-step 
     0     1   NaN   NaN   NaN   NaN   NaN 
     1     6     5   NaN   NaN   NaN   NaN 
     3    70    32     9   NaN   NaN   NaN 
     4   153    83    17     2   NaN   NaN 
     5   286   133    25     2     0   NaN 
     6   481   195    31     2     0     0 

Indeed the value 481 appears again, and in the table it can be seen that 
  f (5) = 86 should be replaced by f (5) = 286 (4p) 
b) The only functions with a constant non-zero third derivative are polynomials of degree 3, 
so f (x) must be one—this is basic Differential Equations—. With six distinct nodes, as we 
have, the Lagrange interpolation polynomial of degree ≤ 5 exists and is unique; in this case, 
we know it is of degree 3 < 5, so any 4 of the 6 nodes provided define the exact same poly-
nomial f (x) of degree 3. 
Using only 3 nodes instead of 4 (with nodal ordinates) there are still infinitely many polyno-
mials of degree ≤ 3 that pass by the corresponding 3 interpolation points (because the 4th in-
terpolation point could be chosen arbitrarily). Hence, if I am not allowed to use any other in-
terpolation point, I will have to use some other information about f (x). It seems reasonable to 
use that f 3)(x) ≡ 12 (or fi, 3

 = 2). My plan is to define f (x) = p3(x) as an osculating polynomial in 
terms of the unknown f '(3) as a parameter (3 being a double node), build the corresponding 
table of differences with repetitions, impose the condition that fi, 3

 = 2 and solve for f '(3): 
zi fi,0 fi,1 fi,2 fi,3 
1 6 — — — 
3 70 (70 − 6) / (3 − 1) = 32 — — 
3 70 f '(3) / 1! ( f '(3) − 32) / (3 − 1) — 
4 153 (153 − 70) / (4 − 3) = 83 (83 − f '(3)) / (4 − 3) 2 

So the final element (2) should satisfy this: 
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c) Using finite (not divided) differences forces me to choose equally-spaced nodes. As we 
know, any 4 of the 6 will define f (x) uniquely; but the only four equally-spaced nodes that we 
have are xi = 3, 4, 5, 6. So I will build the corresponding table of finite differences: 
xi = 3:6; 
yi = [70 153 286 481]; 
[Diy0, table] = anm_tablefd(xi, yi); 
table 

  3 



%    i    xi     fi    Dfi   D2fi   D3fi 
     0     3     70      -      -      - 
     1     4    153     83      -      - 
     2     5    286    133     50      - 
     3     6    481    195     62     12 

To work in terms of t instead of x, the following change of variable is applied: 
  x = x0

 + ht = 3 + t � t = −3 + x = t(x) 
The Newton polynomial in terms of t, q(t), is: 
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where we have taken as many common factors (nested products) as possible, including the 
ones in the denominators’ factorials, because we will soon have to evaluate this polynomial at 
x = 3.5 optimally (from the point of view of computational cost and with good error propaga-
tion, i.e. with the Hörner-like algorithm). 
First we are asked to obtain f (x). Now f (x) = q(t(x)) where both q(t) and t(x) have been explic-
itly written above. Substituting: 

  > @4( ) 70 ( 3) 83 50 4( 5)
2

xf x x x� ½ � � � � �® ¾
¯ ¿

 (1.5p) 

although it’s also perfectly fine to give the answer in terms of q(t) and t(x), i.e. as 

  > @1( ) ( ( )) where ( ) 70 83 50 4( 2) and ( ) 3
2
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 � . 

To evaluate optimally at x = 3.5 we can use the expression explicitly written in terms of x 
above, but it is usually more convenient to calculate t = t(3.5) and then evaluate q(t): 
  t(3.5) = 3.5 − 3 = 0.5 

  > @0.5 1(3.5) (0.5) 70 0.5 83 50 4(0.5 2)
2
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The function anm_newtoneven corroborates the result: (1.5p) 
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[pp, coefs, chars] = anm_newtoneven(3.5, xi, yi); chars, pp 
chars = 
  [1,1] = t(x) = (x-x0)/h = (x-3)/1 = 1*x + -3 
  [2,1] = q(t) = 70 + 83*t/1! + 50*t*(t-1)/2! + 12*t*(t-1)*(t-2)/3! 
  [3,1] = q(t) = 70 + 83*t + 25*t*(t-1) + 2*t*(t-1)*(t-2) 
  [4,1] = q(t) = ((2*(t-2) + 25)*(t-1) + 83)*(t-0) + 70 
  [5,1] = q(0.5) = ((2*(0.5-2) + 25)*(0.5-1) + 83)*(0.5-0) + 70 
  [6,1] = q(0.5) = ((2*-1.5 + 25)*-0.5 + 83)*0.5 + 70 
pp =  106 

Exercise 3 
The form of the integral immediately suggests the change of variable 4x2 = t2, or t = 2x, 
hoping to obtain some integral of the Gauss-Chebyshev type. (Another practical hint that this 
may be the way to go is the absence of an Appendix with Gauss nodes and weights.) 
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I will now apply Gauss-Chebyshev rules of 1, 2, 3… nodes until the distance between the last 
two values obtained does not exceed 1% of the last one. (2p) 
One node (n = 0): x0 = 0; w0 = π 
I will continue with Octave, which should tell you very precisely the operations to perform 
with your calculator. You can also copy-paste to the Octave command window and check the 
results for yourself: 
clear 
format long g 
f = @(t) exp(-t.^2) / 4; 
ti = 0; wi = pi; 
Q1 = wi * f(ti)                      % rule of 1 node 

Q1 = 0.7853981633974483 
ti = [cos(pi / 4), cos(3 * pi / 4)], wi = pi / 2; 

ti =  0.7071067811865476  -0.7071067811865475 
Q2 = wi * sum(f(ti))                 % rule of 2 nodes... 

Q2 = 0.476368066182545 
relative_distance_percent = abs((Q2 - Q1) / Q2) * 100 

relative_distance_percent =  64.87212707001282 
ti = [cos(pi / 6), 0, cos(5 * pi / 6)], wi = pi / 3; 

ti =  0.8660254037844387  0  -0.8660254037844387 
Q3 = wi * sum(f(ti)) 

Q3 = 0.5091299364479339 
relative_distance_percent = abs((Q3 - Q2) / Q3) * 100 

relative_distance_percent = 6.434874070450451 
ti = cos([1 3 5 7] * pi / 8), wi = pi / 4; 

0.923879532511  0.382683432365  -0.382683432365  -0.923879532511 
Q4 = wi * sum(f(ti)) 

Q4 = 0.506452500898245 
relative_distance_percent = abs((Q4 - Q3) / Q4) * 100 

relative_distance_percent = 0.5286646911487666 

This is, for the first time, less than 1%, so 

  4 0.5064525I Q|   (stopping criterion 1%) (2p) 

There is a function in the usual repository that automates this: 
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[Q, info] = anm_quadgcheb(f, -100, 1) 
Q = 0.506452500898245 
info = 
  1  0.7853981633974483   NaN                    NaN 
  2  0.476368066182545   -0.3090300972149033    -0.6487212707001282 
  3  0.5091299364479339   0.03276187026538896    0.06434874070450451 
  4  0.506452500898245   -0.002677435549688911  -0.005286646911487666 

To know more: the exact value of this integral cannot be expressed in terms of elementary 
functions, but it can in terms of a special function called a modified Bessel function of the first 
kind. Its more precise value is I = 0.5066095167373…. When compared with this value, the 
error made by Q4 with respect to it is about 0.031%, which is much better than the 1% “preci-
sion” of the stopping criterion. This is what happens most of the times (but not always): a 
given stopping criterion “precision” results in a value that is typically more precise than that. 

Exercise 4 
a) The first node x0

 = a and the last one x8
 = b are not used, so this is the open Newton-Cotes 

rule of 7 nodes. Since the number of nodes is odd, the polynomial degree is 1 unit higher than 
the minimum one, 6, guaranteed by construction with 7 nodes, so N = 6 + 1 = 7 and 
m = N + 1 = 7 + 1 = 8: m = 8 (0.75p) 
Indeed, for a polynomial of degree 7, the eighth derivative is zero, so E = 0; while for a poly-
nomial of degree 8, the eighth derivative is a non-zero constant, and E ≠ 0, in accordance with 
the polynomial degree being N = 7. 
Therefore r = 9 (0.25p) 
because the power of h in the error term of the simple rule is always one unit higher than m 
(r is, by definition, the order of precision or order of convergence of the simple rule: 
r = OCS = 9). 
The other Newton-Cotes formulas with the same order of precision and polynomial degree of 
exactitude are:  
 - The closed rule of 7 nodes;  
 - The closed rule of 8 nodes (with no “extra unit” of N or OC);  
 - The open rule of 8 nodes (with no “extra unit” of N or OC). 
The rule being open or closed has no influence on the polynomial degree N and on the order 
of convergence of the simple rule (with OCS = N + 2 always); but closed rules are more stable 
because they tend to have fewer negative weights. And, for the same polynomial degree / or-
der of convergence, the rules with an odd number of nodes are more “efficient” because the 
computational cost is less (one evaluation of f less). Hence, out of the four rules mentioned, 
I would use the Newton-Cotes closed rule of 7 nodes. (1p) 
b) Divide [a,b] into M equally-wide subintervals [ai,bi] (i = 1, …, M) and apply the simple 
rule to each one of them. The error EC of the compound rule will be the algebraic sum of the 
errors of the simple rules ES,i applied in all the subintervals (i.e. sum with the errors’ signs, 
because errors in excess and in defect may cancel out): 
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where 8)f  is the arithmetic mean of the M values f 8)(ξi), each one in one subinterval. As 
such, this arithmetic mean must be some intermediate value between the minimum and the 
maximum values f 8)(ξi) (which always exist because their number M is finite). Assuming that 
f 8) is continuous in [a,b], by virtue of Bolzano’s (or Weierstrass’s) Intermediate Value Theo-
rem, there must be at least one ξ between the nodes where 8) 8)( )f f[  . Substituting:  
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Now, each subinterval is of width 8h, where h is the distance between nodes in each simple 
rule, so b − a = M ꞏ 8h � M = (b − a) / (8h), which we also substitute: 
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which is the expression sought. It is customary to write it in terms of (b − a), instead of M, 
because the former is fixed for a given integral, which often allows one to know a priori what 
distance between nodes h, or number of subintervals M, suffice to guarantee that the total er-
ror EC does not exceed a predefined tolerance. (This can be done when one can find bounds 
of f 8)(x) in [a,b].) 
In the case of the open 7-node Newton-Cotes rule, the constant in the error term of the simple 
rule turns out to be K = 3956 / 14175, so the one in the one of the compound one is 
K / 8 = 989 / 28350. 

Exercise 5 
I will first check that the solution provided is correct (although, in a real exam situation, one 
would be forgiven to trust): 
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Good. 

To go from t0
 = 1 to tf

 = 2 (where ( ) 2y t   is the value we are seeking) we need to take two 
steps of size h = 0.5. To write the advance formula of Heun’s method one can first write that 
of the Trapezoidal’s and then substitute the yk+1 on the right-hand side (which gives the 
Trapezoidal Method its implicit character) by the value of yk+1 given by Euler’s method (thus 
obtaining an explicit method that can be proved to maintain the Trapezoidal’s second order of 
convergence):  
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We can write this in terms of the ki constants typical of the Runge-Kutta methods —
remember that Heun’s method is a Runge-Kutta method of order 2— as follows. I will also 
use bold typeface for vectors, for the case of a system of ODEs: 

  
2
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( , ) 2
k k

k k k
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t h h

 �
 �
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k 1

k f y k ky y
k f y k

 (1.5p) 

(It is also possible to define k1, k2 without hk in them and multiply later.) 
Finally, I will transform the second-order ODE into a system of two ODEs of order 1: 
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Note that the system of ODEs is not linear (y1 is dividing, not multiplying a function of t), 
so it cannot be written in matrix form as y' = J (t) y + g(t). 
The rest is operations. I will indicate them, and give results, with Octave: 
clear 
format long g 
f = @(t, y)  [y(2);  -1 / (4 * t * y(1))]; 
y0 = [1; 0.5];  h = 0.5; 
t0 = 1;  t1 = 1.5;  t2 = 2; 
% First step: 
k1 = f(t0,     y0     ) * h 

k1 =  0.25 
     -0.125 

k2 = f(t0 + h, y0 + k1) * h 
k2 =  0.1875 
     -0.06666666666666667 

y1 = y0 + (k1 + k2) / 2 
y1 =  1.21875 
      0.4041666666666667 

% Scond step: 
k1 = f(t1,     y1     ) * h 

k1 =  0.2020833333333333 
     -0.06837606837606838 

k2 = f(t1 + h, y1 + k1) * h 
k2 =  0.1678952991452992 
     -0.0439882697947214 

y2 = y1 + (k1 + k2) / 2 
y2 =  1.403739316239316 
      0.3479844975812718 

Let me also check this with the function anm_ode, available from the usual repository: 
[tt, yy] = anm_ode(f, [1 2], y0, 2, 'Heun') 

tt =  1     1.5                 2 
yy =  1     1.21875             1.403739316239316 
      0.5   0.4041666666666667  0.3479844975812718 

Looks good. 
The only value we are interested in is (rounded to 6 significant digits): 

  1(2) (2) 1.40374 2y y  �  (1.5p) 
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A more precise value of 2  is: 
sqrt(2) 

ans = 1.414213562373095 

so the value 1.40374 is not so bad considering the large step size used (h = 0.5).  
Heun’s method is of order 2, so the error with respect to the exact value 2  should tend to 
zero as a O(h2). For curiosity, if we execute it with h = 0.001: 
[tt, yy] = anm_ode(f, [1 2], y0, 0.001, 'Heun'); 
yy(1, end) 

ans = 1.414213520210385 

which is better (error on the order of 4e-8). 

Exercise 6 
This is the general process to follow in order to check for consistency, stability, convergence 
and order of convergence of linear multistep methods: 
1.- Identify the coefficients αj, βj of the linear multistep method’s advance formula with 

those of the general form 
1

0 0

k k

n k j n j j n j
j j

y y h fD E
�

� �
  

 � �¦ ¦ �  (and αk = 1). 

2.- Write its first and second characteristic polynomials:  
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3.- The method is consistent (Li
 / h → 0) iff ρ(1) = 0, ρ'(1) = σ(1). 

4.- The method is stable (|AF| < 1) iff the roots zi of ρ(z) verify ||zi|| d 1 on the complex plane, 
and the ones with modulus 1 are simple roots. 

5.- The method is convergent iff it is consistent and stable, with order of convergence p iff:  

  1

0 0

1 k k
m

j j
j j

mj j
m

D E �

  

 ¦ ¦  for m = 1, 2, …, p, but not p+1 (and with 00 = 1) 

In our case: 
1.- The method is of 2 steps, so k = 2; and explicit, so fn+k

 = fn+2 does not appear on the right-
hand side, so β2 = 0. Therefore the form of the advance formula is:  
  � �2 0 1 1 0 1 1 0n n n n ny y y h f fD D E E� � � � � � � �  (and α2 = 1). 

2.- Characteristic polynomials: 2
0 1 0 1( ) ; ( )z z z z zU D D V E E � �  � . 

In this case the sum of the roots of ρ must be zero, and so of σ: 

  

2
1 1 02

0 1 1,2

2 2
1 1 0 1 1 0

1 2 1 1

0 1 0 1 0 1 0

4
( ) 0 ;

2
4 4

0 0
2 2

( ) 0 ; 0 0

z z z z

z z

z z z

D D D
U D D

D D D D D D
D D

V E E E E E E E

� r �
 � �  �  

� � � � � �
�  �  �  �  

 �  �  � �  �  

 

Hence 2
0 1( ) ; ( )z z z zU D V �  E  

3.- Consistency: 2
0 0(1) 0 : 1 0 1U D D �  �  �  

  > @ 1 1 1(1) (1) : 2 2 1 2zzU V E E c    � �   
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We now have all the parameters:  
   2

0 1 2 0 1 2( , , ) ( 1,0,1) ; ( ) 1 ; ( , , ) (0, 2,0) ; ( ) 2z z zD D D U E E E V �  � �   z

4.- Stability: the roots of ρ(z) = −1 + z2 are z1,2 = ±1, both with modulus 1 ≤ 1 and 
simple (two different roots of a polynomial of degree 2). 

5.- Order of conv.: � �1 1 011: 1 0 1 2 2 1 ; 2 2 ok
1

m  � � � �  �   

  � �2 2 112 : 1 0 1 2 2 1 ; 2 2 ok
2

m  � � � �  �   

  � �2 3 21 83: 1 0 1 2 2 1 ; 2 ko
3 3

m  � � � �  � z  

Therefore the order of convergence is p = 2. 
Substituting parameters, the advance formula reads:  
  2 12n n ny y h f� � �  (4p) 

or alternatively 1 1 2n n ny y h� � f � . This makes sense: the slope for the whole two-steps, of 
size 2h, is taken to be the value of f (t,y) at its midpoint (tn, yn), which is the latest calculated 
point at any given moment. This method, sometimes called BF (Backward-Forward) 
Midpoint method, can also be called 2-step Midpoint method. 

Exercise 7 
a) For the formula to be of the highest possible order, we will locate the four nodes symmet-
rically on both sides of a central point z (case Π'(z) = 0 in the theory—z cannot be one of the 
nodes (case Π(z) = 0) because then the order would be one unit less). This also lets me define 
a formula applicable in section b), where all 5 data points in the table are equally-spaced, by 
distributing the nodes as follows: 
  x0 = z − 2h, x1 = z − h, x2 = z + h, x3 = z + 2h 
The figure represents the nodal positions: 

  

f (x)

x
z

z + h z + 2hz � 2h z� h
x0 x1 x2 x3

y  

h hh h

 
Calculation of Ai by differentiating Lagrange base functions (Ai = Li'(z)): 

 

1 2 3
0

0 1 0 2 0 3

1 2 1 3 2 3
0

0 03

( )( )( )( )
( )( )( )
( )( ) 1 ( ) 1 ( ) 1 ( )(( )

( )( 3 )( 4 )
( )( ) ( )( 2 ) ( )( 2 ) 1 1 2 2 1( )

12 12 12

x x x x x xL x
x x x x x x

)x x x x x x x x x x x xL x
h h h

h h h h h hL z A
h h

� � �
 

� � �
� � � � � � � � � � � �c  

� � �
� � � � � � � � �c   

� � h
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0 2 3
1

1 0 1 2 1 3

0 2 0 3 2 3
1

1 13

( )( )( )( )
( )( )( )
( )( ) 1 ( ) 1 ( ) 1 ( )( )( )

( )( 2 )( 3 )
(2 )( ) (2 )( 2 ) ( )( 2 ) 1 2 4 2 2( )

6 6

x x x x x xL x
x x x x x x
x x x x x x x x x x x xL x

h h h
h h h h h hL z A

h h

� � �
 

� � �
� � � � � � � � � � � �c  

� �
� � � � � � � � � �c   

3h
  

 

 

0 1 3
2

2 0 2 1 2 3

0 1 0 3 1 3
2

2 23

( )( )( )( )
( )( )( )
( )( ) 1 ( ) 1 ( ) 1 ( )(( )

(3 )(2 )( )
(2 )( ) (2 )( 2 ) ( )( 2 ) 1 2 4 2 2( )

6 6

x x x x x xL x
x x x x x x

)

3

x x x x x x x x x x x xL x
h h h

h h h h h hL z A
h h

� � �
 

� � �
� � � � � � � � � � � �c  

�
� � � � � �c   

� � h
  

 

 

0 1 2
3

3 0 3 1 3 2

0 1 0 2 1
3

3 33

( )( )( )( )
( )( )( )
( )( ) 1 ( ) 1 ( ) 1 ( )(( )

(4 )(3 )( )
(2 )( ) (2 )( ) ( )( ) 1 2 2 1 1( )

12 12 12

x x x x x xL x
x x x x x x

2 )x x x x x x x x x x x xL x
h h h

h h h h h hL z A
h h h

� � �
 

� � �
� � � � � � � � � � � �c  

� � � � � � �c     

 

Substituting: 0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )f z D E A f x A f x A f x A f x Ec  �  � � � �   

  1 2 2 1( 2 ) ( ) ( ) ( 2 )
12 3 3 12

f z h f z h f z h f z h E
h h h h

� �
 � � � � � � � �   

  ( 2 ) 8 ( ) 8 ( ) ( 2 )( )
12

f z h f z h f z h f z hf z E
h

� � � � � � �c  �  (2.5p) 

The truncation error E is the derivative of the error of the interpolation polynomial at z:  

  � � �3 3 0 1 2 3( ) ( ) ( ) ( ) ( ) ( ) [ , , , , ] ( )E f z D f z p z f z p z e z f x x x x z z �c cc c c c �  �  �   3

0 1 2 3 0 1 2 3[ , , , , ] ( ) [ , , , , ] ( )
  

  f x x x x z z f x x x x z zc c 3 � 3  

The last term is 0 by symmetry (four nodes symmetrically located on both sides of z make 
Π'(z) = 0); hence:  

  
5)

0 1 2 3 0 1 2 3Theorem Chapter 1

( )[ , , , , ] ( ) 1! [ , , , , , ] ( ) ( )
5!

fE f x x x x z z f x x x x z z z z[c 3  3  3   

 
5) 5) 5)

4
0 1 2 3

( ) ( ) ( )( )( )( )( ) (2 )( )( )( 2 )
5! 5! 30

f fz x z x z x z x h h h h E h[ [
 � � � �  � �   

f [  (2p) 

b) This is mostly operations using the formula obtained in section a). With Octave: 
clear 
format long g 
f0 = 3.10;   f1 = 3.12;   fz = 3.14;  f2 = 3.18;  f3 = 3.24;   h = 0.01; 
A0 = 1/12/h; A1 = -2/3/h;             A2 = 2/3/h; A3 = -1/12/h; 
ipz = A0 * f0 + A1 * f1 + A2 * f2 + A3 * f3       % i'(z) (approx.) 

ipz =     2.83333333333335 
vz  = 0.98 * ipz + 0.142 * fz                     % v(z)  (approx.) 

vz =     3.22254666666668 
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So, rounded to 6 significant digits: (1.02) 3.22255v |  (1p) 
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