
 ADVANCED NUMERICAL METHODS
 BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING
 JUNE 19, 2017
TIME: 3 hours 30 points total
 EXAM ANSWER

1a) A Taylor polynomial is a truncated Taylor series expansion without its error term. It is also an
osculating polynomial with interpolation data at one only multiple node. For the degree of the poly-
nomial to be ≤ 3 we need 4 conditions (4 interpolation data). At x0

 = 0 these conditions will be that the
values of p3 and its 1st, 2nd and 3rd derivatives coincide with those of f. These are:

 f (x) = cos(2x) → f (0) = 1
 f '(x) = −2 sin(2x) → f '(0) = 0
 f "(x) = −4 cos(2x) → f "(0) = −4
 f 3)(x) = 8 sin(2x) → f 3)(0) = 0

So the interpolation data are p3(0) = 1, p3'(0) = 0, p3"(0) = −4, p3
3)(0) = 0. (1p)

The corresponding table of divided differences with repetitions (using Octave) is:
[fii, zi, table] = anm_tableddr(0, [1 0 -4 0]); disp(table)

i zi fi fi1 fi2 fi3
- -- -- --- --- ---
0 0 1
1 0 1 0
2 0 1 0 -2
3 0 1 0 -2 0

This is also very easy to do “by hand”—both “−2” of the column of second-order differences are
f2,2 = f2,3 = f "(0) / 2! = −4 / 2 = −2. (1p)

The corresponding osculating polynomial (Taylor polynomial or Taylor truncated series) is:
[pp, coefs, chars] = anm_newton([], 0, [1 0 -4 0]); chars{1:2}

p3(x) = 1 + 0*(x-0) + -2*(x-0)*(x-0) + 0*(x-0)*(x-0)*(x-0)
p3(x) = ((0*(x-0) + -2)*(x-0) + 0)*(x-0) + 1

or 2
3() 1 2p x x  (0.5p)

1b) The error term of osculating polynomials is, in general:

 0 1

)

0 1

()
() () () ()

!
n

k
k kk

n

f
e x x x x x x x

k


    (1p)

for some  between the nodes and x (or in an interval [a, b] where the nodes and ξ are and where f Ck;
 depends on x). ki is the number of conditions at node xi, and k is the total number of conditions = Σ ki.
In our case k = k0 = 4 at the only node x0

 = 0, so:

4)

4 4 416cos 2() () 2
() (0) cos(2)

4! 4! 3

f
e x x x x

 
    for some  between 0 and x

which, as expected, is precisely the remainder of order 4 of the Taylor series expansion (in its La-
grange representation, i.e. f 4)(ξ) x4 / 4!) —remember that e(x) = f (x) − p3(x). (0.5p)

1c) If I notice that p3(x) = 1 − 2x2 satisfies p3(−1) = p3(1) = −1, I will immediately know that
p5(x) = p3(x) (because of the uniqueness of osculating polynomials). However, I am explicitly asked
to complete the table of section a) and don’t have much time for noticing things. I will place the info
from the two new nodes at the bottom (two final rows, corresponding to i = 4, 5). This is, again, very
easy to do “by hand”. With Octave:

 2

[fii,zi,table] = anm_tableddr([0 -1 1], [1 0 -4 0; ...
 -1 NaN NaN NaN; -1 NaN NaN NaN]); disp(table)

warning: Nodes are not sorted. But I'm sure you know what you're doing.
warning: called from anm_tableddr at line 58 column 5
i zi fi fi1 fi2 fi3 fi4 fi5
- -- -- --- --- --- --- ---
0 0 1
1 0 1 0
2 0 1 0 -2
3 0 1 0 -2 0
4 -1 -1 2 -2 0 0
5 1 -1 0 -2 0 0 0

To reuse the whole table of section a) unchanged I could also have added the two new nodes −1 and 1
at the beginning of the original table, or one node at the beginning and the other one at the end, be-
cause the table is of divided differences, and permutations of the nodes do not alter divided differ-
ences1.

So now, regardless of whether I had noticed it before or not, I see that the new principal divided dif-
ferences are 0 and 0, so no new term has to be added, and:

 5 3() ()p x p x (1p)

Since the new polynomial is the same as the old one, one would be tempted to think that its error term
should also be the same. But it is not, because f is different now, and e(x) is the error of p3(x) with re-
spect to a specific function f (x). Indeed, the two new interpolation points are not satisfied by
f (x) = cos(2x): f (−1) = −0.41615 ≠ −1 and f (1) = −0.41615 ≠ −1. Hence,

 p5 does not interpolate f (x) = cos(2x) (0.5p)

(although it will be very close at values of x close to x0
 = 0). To obtain the new error term we just par-

ticularize the general one of section c) with x0
 = 0, k0

 = 4, x1
 = −1, x2

 = 1, k1
 = k2

 = 1, k = 6, getting:

6) 6)

4 4 2() ()
() (1)(1) (1)

6! 720

f f
e x x x x x x

 
    

for some ξ between the nodes and x. (0.5p)

2) Under quite general smoothness conditions (f  C1), the maximum signal will occur at a stationary
point x, i.e. where f '(x) = 0. The second table shows that f '(x) goes from positive to negative in an ap-
parently monotonic fashion. We must estimate the intermediate point x where f '(x) = 0 (which should
lie between 3.75 and 6.25; remember to check this at the end).

One could calculate the polynomial p3(x) interpolating f '(x) using the four nodes of that 2nd table, but
then we would have to find its root. In this case the polynomial’s degree is ≤ 3, so there exists an ex-
act, closed formula for that2; however, finding a root of a polynomial is typically more “difficult” than
just evaluating it (and, in any case, we are asked to find x by evaluating a polynomial).

So to estimate x by evaluating a polynomial we will use inverse interpolation. We will interchange the
abscissas and the ordinates of the second table (checking that the new abscissas are monotonic—this is
important), calculate the corresponding interpolation polynomial q3, and evaluate it at 0. (1p)

The new nodes are not equally spaced anymore, so we will use divided differences to calculate the
inverse-interpolation polynomial. With Octave, calling Xi

 / Yi the new abscissas / ordinates:

1 Had it been a table of finite differences, the sorting order would have had to be respected; however, osculating
polynomials are not constructed with finite differences, because multiple nodes are like nodes infinitely close to
one another, and hence not equally-spaced.
2 For the quadratic equation there is the well-known x = [–b ± sqrt(b2 – 4ac)] / (2a). For the cubic and quartic
equations there are similar expressions—albeit larger, and forking into 3 and 4 values, respectively. But the
general quintic equation does not have a closed-form solution (although many particular cases do). The roots of
higher-degree polynomials can be found using iterative methods (secant, Newton-Raphson, etc.).

 3

format long g
Xi = [0.56640 0.07029 -0.27079 -0.41701]; % new abscissas = old ordinates
Yi = [1.25 3.75 6.25 8.75]; % new ordinates = old abscissas
[fii, Xi, table] = anm_tableddr(Xi', Yi'); disp(table)

warning: Nodes are not sorted. But I'm sure you know what you're doing.
warning: called from anm_tableddr at line 58 column 5
i xi fi1 fi2 fi3 fi4
- -- --- --- --- ---
0 0.56640 1.25
1 0.07029 3.75 -5.0392050150
2 -0.27079 6.25 -7.3296587311 2.7358827937
3 -0.41701 8.75 -17.0975242785 20.0448708135 -17.6009884176

The inverse-interpolation polynomial q3(X) and its value at X = 0 are: (1p)
[x, coefs, chars] = anm_newton(0, Xi', Yi', 9); chars, x

warning: Nodes are not sorted. But I'm sure you know what you're doing.
p3(x) = 1.25 + -5.03920502*(x-0.5664) + 2.73588279*(x-0.5664)*
 (x-0.07029) + -17.6009884*(x-0.5664)*(x-0.07029)*(x--0.27079)
p3(x) = ((-17.6009884*(x--0.27079) + 2.73588279)*(x-0.07029) +
 -5.03920502)*(x-0.5664) + 1.25
p3(0) = ((-17.6009884*(0--0.27079) + 2.73588279)*(0-0.07029) +
 -5.03920502)*(0-0.5664) + 1.25
p3(0) = ((-17.6009884*0.27079 + 2.73588279)*-0.07029 + -5.03920502)*
 -0.5664 + 1.25
x = 4.02337534066208

Hence the polynomial is: q3(X) = 1.25 − 5.03920502 (X − 0.5664) + (1p)
 + 2.73588279 (X − 0.5664)(X − 0.07029) − 17.6009884 (X − 0.5664)(X − 0.07029)(X + 0.27079)

and its value at X = 0, evaluated optimally (i.e. using the Hörner-like algorithm) is:

 q3(X
 = 0) = [(−17.6009884·0.27079 + 2.73588279) (−0.07029) − 5.03920502] (−0.5664) + 1.25 =

 x = 4.02337534

This lies indeed between 3.75 and 6.25, as expected. (0.5p)

Of course it is also possible (but unnecessary) to sort the new nodes Xi in ascending order.

Finally let us plot p3(x) and q3(X). In order to plot them together, I will interchange abscissas and ordi-
nates for q3. The best way to understand the figure precisely is to read the Octave code that generates
it:
close all, figure, hold on, format short g
xi = Yi'; yi = Xi; % keeping previous variables
plot(xi, yi, 'ob', 'LineWidth', 1)
p3 = @(xx) anm_newton(xx, xi, yi);
q3 = @(yy) anm_newton(yy, yi, xi);
xx = linspace(xi(1), xi(end));
yy = linspace(yi(1), yi(end));
plot(xx, p3(xx), 'b', 'LineWidth', 2)
plot(q3(yy), yy, 'r--', 'LineWidth', 2)
plot(x, 0, 'sr', 'LineWidth', 2)
xlabel('\itx')
ylabel('{\ity} = {\itf \prime}({\itx})')
legend('Nodes', ...
 'Interp. polynomial {\itp}_3({\itx})', ...
 'Inverse interp. pol. {\itq}_3^{-1}({\itx})', ...
 'Estimated root \itx')

The output is:

 4

where, of course, q3

−1(x) does not represent 1 / q3(x), but the inverse function of q3(y).

One could argue that the inverse interpolation seems to introduce artificial oscillations, or that f '(x) is
probably more like the solid blue line than like the red dashed one. We don’t really know. If true, the
maximum value of f (x) is probably attained at a value of x slightly more to the right (root of p3). Fi-
nally, to plot with interchanged abscissas/ordinates you can execute this code:
figure, hold on
plot(yi, xi, 'ob', 'LineWidth', 1)
plot(p3(xx), xx, 'b', 'LineWidth', 2)
plot(yy, q3(yy), 'r--', 'LineWidth', 2)
plot(0, x, 'sr', 'LineWidth', 2)

3a) We will integrate the interpolation polynomial both in its Lagrange and in its Newton representa-
tion with equally-spaced nodes. We are only asked to do it “by integrating an interpolation polyno-
mial”, so both answers comply.

The basic interpolatory idea is: () ()
b b

a a
I f x dx p x dx Q  

The Simpson formula is, by definition, the closed Newton-Cotes one of three nodes, so x0
 = a,

x1
 = a + h = b – h, and x2

 = b:

hh
x

f2
f1 f0

x2x1x0

a b

f (x)

In this case:
2

0
2 ()

x

x
Q p x dx 

Let us first integrate the Lagrange representation of p2(x)—a more “theoretically modest” option:

 0 2 0 11 2
2 0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

()() ()()()()
()

()() ()() ()()

x x x x x x x xx x x x
p x f f f

x x x x x x x x x x x x

    
  

     

Integrating:
2

0

0 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

()() ()()()()

()() ()() ()()

x

x

x x x x x x x xx x x x
Q f f f dx

x x x x x x x x x x x x

     
          


2 2 2

0 0 0

0 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

0 1 2

()() ()()()()

()() ()() ()()

x x x

x x x

x x x x x x x xx x x x
dx f dx f dx f

x x x x x x x x x x x x

w w w

         
                 
  
  

To take advantage of some symmetries, these 3 integrals will be easier to calculate with this change of
variable: x = x1

 + ht; dx = h dt

 5

The 1st weight w0 is:

 2

0

3
1 1 1 12 2 21 2

0 1 1 1 0
0 1 0 2

()() (1) 1
() 2

()() ()(2) 2 2 2 3 3

x

x

x x x x ht h t h h h h
w dx hdt t t dt t dt t dt h

x x x x h h  

  
       

       

Similarly, for the 3rd weight, w2 = h / 3 too. As for the 2nd weight w1:

3

1 1 12 2
1 1 1 0

(1) (1) 1 2 4
(1) 2 (1) 2 1 2

() 3 3 3

h t h t h
w hdt h t dt h t dt h h

h h 

   
               
  

Substituting:  0 0 1 1 2 2 0 1 24
3

h
Q w f w f w f f f f      (1.75p)

Now let’s write and integrate the Newton representation of p2(x) with equally-spaced nodes. Here the
customary change of variable is x = x0

 + ht
and then 2 () (())p x q t x

where 2
0 0 0 0 1 0 1 0

(1)
() () ()

0 1 2 2!

t t t t t
q t f f f f t f f f f

      
                 
     

2

0 1 2 1 1 0(1) [() ()]
2

t t
t f t f f f f f


       

  
2 2 2

2
0 1 2 1 0 0 1 2

3
(1) (2) 1 2

2 2 2 2 2

t t t t t t
t f t f f f f f t t f f

   
               

   

Integrating:  2

0

2 2
2 2 2

0 1 20 0

3
(()) () 1 2

2 2 2 2

x

x

t t t t
Q q t x dx q t hdt h f t t f f dt

    
             

    
  

  
2 2

2 2 22
0 1 20 0 0

3
1 2

2 2 2 2

t t t t
h dt f h t t dt f h dt f
                           
  

Hence:
22 3

0

0

3 8
2 3

4 6 6 3

t t h
w h t h

            
  

23

2
1

0

8 4
4

3 3 3

t h
w h t h

          
  

23 2

2

0

8
1

6 4 6 3

t t h
w h h

          
  

with the same result as before.

As for the truncation error term E, it is easily obtained by integrating the first monomial (of
1, x, x2, x3…) that is not integrated exactly by the rule, i.e., by integrating xN+1 where N is the rule’s
polynomial degree, and then isolating K from its known expression E = K f N+1)(ξ) f. s.   [a,b].

With three nodes, N ≥ 2 by construction (remember we were integrating p2(x) before); but since the
Simpson rule is a Newton-Cotes one with an odd number of nodes, we gain one extra unit over that
minimum, resulting in N = 3. If we didn’t remember this fact, integrating x3 will remind us of it. With-
out loss of generality, the calculations will be simpler if we place the origin of abscissas at the central
node, so x0 = −h, x1 = 0, x2 = h. With f (x) = x3:

  3 3 3 3
0 1 20 (4) () 4·0 0 0

3 3

h

h

h h
x dx Q E f f f E h h E E


              

and the error E being 0 means that x3 is integrated exactly and N ≥ 3. Let’s now try with f (x) = x4:

  
5 5

4 4 4 4
0 1 2

2
2 (4) () 4·0 0

5 3 3 3

h

h

h h h h
x dx Q E f f f E h h E E


              

The error E being non-zero means that x4 is not integrated exactly, so N < 4, and therefore N = 3.
Hence the form of the error term is E = K f N+1)(ξ) = K f 4)(ξ) for some   [a,b]. For f (x) = x4,

 6

f 4)(x) = 4! = 24. Substituting:

5 5 5 5 52 2 2 6 10

2 24
5 3 24 5 3 24 15 90

h h h h h
K K

          
 

Because f 4)(x) is constant for f (x) = x4, ξ does not appear in it and K could be isolated in terms of h
alone. But the expression E = K f 4)(ξ) is valid not only for f (x) = x4, so substituting K = −h5/90 into
E we finally obtain the error term of the simple Simpson rule:

5 4) ()

90

h f
E


 f. s.   (a, b) (1.75p)

The subject’s function anm_nc confirms that these results are correct:

[Q, h, xi, wi, Es, Ks, Ec, Kc, N] = anm_nc(3, 1); Q, Es, Ec, N
Q = Simpson's rule: Q = h * (1/3 f(x0) + 4/3 f(x1) + 1/3 f(x2))
Es = -1/90 * h^5 * f^{4)}(\xi)
Ec = -1/180 * h^4 * (b - a) * f^{4)}(\xi)
N = 3

3b) The compound rule QC is obtained by subdividing the interval [a,b] into M equally-wide subin-
tervals, applying the simple rule to each one of them, and summing. The 1st subinterval will use nodes
x1

 = a, x2
 = a + h, x3

 = a + 2h. The 2nd subinterval will use x3, x4, x5. The 3rd one x5, x6, x7, etc. The last,
M-th subinterval will use nodes x2M−1, x2M, x2M+1

 = b. (We could also have called the nodes from x0
 = a

to x2M
 = b, but we’ll not use this notation here3.) The distance between adjacent nodes is h. Each subin-

terval is of width 2h, so b − a = M · 2h  h = (b − a) / (2M) (to also be used later). The i-th node
is then xi = a + (i − 1)h (i = 1, 2, …, 2M+1). The corresponding nodal ordinates can be noted
fi = f (xi). Then the compound quadrature rule reads:

 1 2 3 3 4 5 5 6 7 2 1 2 2 1(4) (4) (4) (4)
3 3 3 3C M M M

h h h h
Q f f f f f f f f f f f f             

or 1 2 3 4 5 6 7 2 1 2 2 1(4 2 4 2 4 2 2 4)
3C M M M

h
Q f f f f f f f f f f           

or 1 2 1 2 4 6 2 3 5 7 2 1

4 2
() () ()

3 3 3C M M M

h h h
Q f f f f f f f f f f             

QC can be rearranged and expressed in other ways too, some with Greek Σ summation symbols, etc.
All are good if they are good. The rule must involve the first and last nodal ordinates, four times the
sum at all the even interior nodes, and two times the sum at all the odd interior nodes. (1.25p)

As for the truncation error term EC, it is the algebraic sum of the errors made at all the subintervals. If
in the 1st subinterval the simple rule makes an error 0.1 in defect (E1

 = 0.1), in the 2nd subinterval an
error 0.2 in excess (E2

 = −0.2), in the 3rd subinterval 0.3 in defect (E3
 = 0.3), etc., then the error of the

compound rule, after summing all the simple rules, will be the algebraic sum of their errors:

 EC = E1
 + E2

 + E3
 + … = 0.1 − 0.2 + 0.3…

In general, since Ei is given by the error of the simple rule we derived above:

5 4) 5

4)

1 1 1

()
()

90 90

M M M
i

C i i
i i i

h f h
E E f




  

 
    

where ξi is some point in the i-th subinterval. Multiplying and dividing by their number M:

4)
5 5 5 4

4) 4) 4)1

()
()

90 90 90 2 180

M

i
i

C

f
h h h b a h b a

E M M f f f
M h


     

   


3 It makes more sense to start with x0 when we will use an interpolation polynomial by all the nodes, because if
the last one is xn, the interpolation polynomial will be of degree ≤ n. That is not the case with compound rules.
Starting with x1, the index of the last node is the total number of nodes.

 7

where 4)f is the arithmetic mean of the M values f 4)(i) (i = 1,…,M). As such, it must be somewhere

between the maximum and the minimum value f 4)(i). If f
 4) is continuous, i.e. if f  C4([a,b]), then, by

Weierstrass’s Intermediate Value Theorem, there must exist at least one   [a,b] where 4) 4)()f f  .

Substituting:
4 4)() ()

180C

h b a f
E

 


for some ξ in [a,b]. This agrees with the output of anm_nc above. (1.25p)

3c) After checking that the number of nodes is odd as needed (indeed, there are 9):
format long g; h = 0.1;
f = [0 2.1220 3.0244 3.2568 3.1399 2.8579 2.5140 2.1639 1.8358];
Qc = h/3 * (f(1) + f(end)) + 4 * h/3 * sum(f(2:2:(end - 1))) + ...
 2 * h/3 * sum(f(3:2:(end - 2)))

Qc = 2.02649333333333

So the answer is: QC = 2.02649333333333 (1p)

3d) We will use the expression of EC above with f (x) = exp(x2). Let’s calculate its 4th derivative so
we can substitute into EC:

2

2

2

2 2

2 2

2

3) 3 3

4) 4 2 2 4 2

()

() 2

() (4 2)

() (8 4 8) (8 12)

() (16 24 24 12) (16 48 12)

x

x

x

x x

x x

f x e

f x xe

f x x e

f x x x x e x x e

f x x x x e x x e



 

  

    

      

This last expression is strictly positive for every x in the interval of integration [0.5, 1]. So substituting
into EC above with f 4)(ξ) > 0, b − a > 0 and h4 > 0 necessarily gives EC < 0. Since any
negative number is less than 10−8, any number of subintervals guarantees that EC < 10−8 as requested.
For example, applying the Law of Least Effort:
 one subinterval (M = 1, or simple rule) is enough. (1.5p)

Actually, any natural number M is a correct answer to this exercise as long as you justify the answer.

If we wanted to make sure that the absolute value of the error is less than 10−8, we would proceed dif-
ferently, namely, by finding an upper bound B of | f 4)(x) | in [0.5, 1] and substituting into EC. We see
that f 4) is monotonic in that interval by calculating its derivative:

2 25) 5 3 3 5 3() (32 96 24 64 96) (32 160 120)x xf x x x x x x e x x x e       

which is strictly positive in the whole interval. Therefore f 4) is strictly increasing4 and, being positive,
its maximum absolute value B, which is a tight upper bound of | f 4)(x) | in [0.5, 1], takes place at x = 1:
format long g
B = (16 + 48 + 12) * exp(1)

B = 206.589418962887

Substituting into EC (with abuse of notation in that the number of subintervals M must be an integer):

4 4) 4 8

8 4
() () (1 0.5) 180 10

10
180 180 0.5C

h b a f h B
E h

B

 
   

    

h = (180e-8 / 0.5 / B)^(1/4)
h = 0.0114894332573683

We now calculate the number of subintervals M that would result in this value of h:

4 It is easy to see that f (x) = exp(x2) and all of its derivatives are strictly positive in [0.5, 1] (and therefore strictly
increasing) by looking at its McLaurin series expansion (which is that of exp(x) with x2 instead of x) and realiz-
ing that all its termwise derivatives can only have positive coefficients and positive powers of x.

 8

 b − a = M · 2h  M = 0.5 / 2 / h = 21.75912

Now the abuse of notation is apparent; but we also know that, in order to guarantee that |EC| < 10−8, we
need to take the next integer larger than 21.759, so

 M = 22 subintervals guarantee that |EC| < 10−8

Finally, as usual, this is the number of subintervals we find a priori, but a posteriori a few fewer typi-
cally suffice. Octave’s function guadgk gives a very precise value of our integral, which can be con-
sidered as exact for the purposes of this exercise; and our subject’s function anm_nc implements all
Newton-Cotes simple and compound rules, Simpson’s included. Observe carefully:
f = @(x) exp(x.^2); I = quadgk(f, 0.5, 1) % "exact" value of the integral

I = 0.917664641723559
for M = 1:22, disp([M, I - anm_nc(f, 0.5, 1, 3, 1, M)]), end

 1 -0.000879181025439157
 2 -5.97334649216075e-005
 3 -1.19951835295673e-005
 4 -3.81761815382298e-006
 5 -1.56795988726088e-006
 6 -7.57275820162384e-007
 7 -4.09124913391956e-007
 8 -2.39961106762721e-007
 9 -1.49866353660322e-007
 10 -9.83554089284411e-008
 11 -6.71922735229202e-008
 12 -4.74498617064611e-008
 13 -3.44540995733666e-008
 14 -2.56180060498323e-008
 15 -1.94413870557852e-008
 16 -1.50189943814993e-008
 17 -1.17855194492478e-008
 18 -9.37722177685174e-009
 19 -7.55381890371609e-009
 20 -6.15283535232436e-009
 21 -5.06209629769216e-009
 22 -4.20269186118816e-009

So a posteriori we see that M ≥ 18 subintervals also make |EC| < 10−8

4) First the ODE of order 2 must be transformed into a system of 2 ODEs of order 1.

Calling y = y1, y' = y2:
1 2

2 12 cos() t

y y

y y t e

 
    

 (1.75p)

the initial conditions being: 0

1
0 ;

2
t

 
   

 
0y (1p)

We can now use Octave for the tedious work:
format long g
f = @(t, y) [y(2); 2 * y(1) + cos(t) - exp(t)];
t0 = 0; y0 = [-1; 2];
h = 0.1; t1 = t0 + h; t2 = t0 + 2 * h;
% First step:
k1 = f(t0, y0) * h

k1 = 0.2
 -0.2 % (-3p)

k2 = f(t0 + h/2, y0 + k1/2) * h
k2 = 0.19
 -0.185252083598106 % (-3.25p)

k3 = f(t0 + h/2, y0 + k2/2) * h
k3 = 0.190737395820095
 -0.186252083598106 % (-3.5p)

 9

k4 = f(t0 + h, y0 + k3) * h
k4 = 0.181374791640189
 -0.172869196115743 % (-3.75p)

y1 = y0 + (k1 + 2 * k2 + 2 * k3 + k4) / 6
y1 = -0.80952506945327
 1.81402041158197 % (-4p)

% Second step:
k1 = f(t1, y1) * h

k1 = 0.181402041158197
 -0.172921689170416 % (-4.25p)

k2 = f(t1 + h/2, y1 + k1/2) * h
k2 = 0.172755956699676
 -0.161071126254058 % (-4.5p)

k3 = f(t1 + h/2, y1 + k2/2) * h
k3 = 0.173348484845494
 -0.161935734699911 % (-4.75p)

k4 = f(t1 + h, y1 + k3) * h
k4 = 0.165208467688206
 -0.151368934953448 % (-5p)

y2 = y1 + (k1 + 2 * k2 + 2 * k3 + k4) / 6
y2 = -0.636388504130479
 1.65230302057667 % (-5.25p)

% Check with anm_ode:
[tout, yout] = anm_ode(f, [0 0.2], y0, 2, 'RK4')

tout = 0 0.1 0.2
yout = -1 -0.80952506945327 -0.636388504130479
 2 1.81402041158197 1.65230302057667

Looks good.
Since the problem is originally stated in terms of a single ODE (of order 2), its solution is
y(t) = y1(t), so we are only interested in the first component of y. Hence the solution is:

 y(0.2)  0.6363885 (-5.5p)

5) The absolute stability condition is that all the eigenvalues eigs(Jh) = h eigs(J) are in the method’s
absolute stability region. If the eigenvalues of J are real, that means that they must be in the absolute
stability interval (2.78, 0) (which is the intersection of the absolute stability region with the real axis
of the complex plane). In our case, with only one ODE, the Jacobian matrix J is 11, or a single ele-
ment f / y = fy where f (t,y) = t2  ty, so: J = fy = t

Absolute stability condition: J h  (2.78, 0)
 2.78 < J h < 0
 2.78 < t h < 0

The last inequation always holds for t ≥ 10 and h = 0.2 (as the exercise establishes).

The second-last inequation is satisfied iff 2.78 > t h, or t < 2.78 / h = 2.78 / 0.2 = 13.9 = b. Hence
 the method will be stable for t  [10, 13.9] (1.5p)

It will be interesting to solve the problem with the RK4 method and h = 0.2 in an interval [10, b] with
b > 13.9 and see if we observe the effects of the method’s numerical instability:
figure, hold on
b = 18.2; % greater than 13.9
f = @(t, y) t^2 - t * y; interv = [10 b]; y0 = 3; h = 0.2;
[tout, yout] = anm_ode(f, interv, y0, 0.01, 'RK4'); % stable
plot(tout, yout, 'b', 'LineWidth', 2)
[tout, yout] = anm_ode(f, interv, y0, h, 'RK4');
plot(tout, yout, '.--r', 'LineWidth', 1, 'MarkerSize', 12)
legend('Stable solution', 'RK4 result', 'Location', 'South')

 10

The unstable RK4 solution visibly separates from the exact one a bit later than at t = 13.9 —it’s more
like around t = 17; but after it does, it goes astray really fast!

6) Going by the “theory”:

  0 1 0 1 0 1() [, ,..., ,] () [, ,..., ,] () [, ,..., ,] ()n n nE e z f x x x z z f x x x z z f x x x z z         

2) 1)

0 1 0 1

() ()
1! [, ,..., , ,] () [, ,..., ,] () () ()

(2)! (1)!

n n

n n

f f
f x x x z z z f x x x z z z z

n n

  

        
 

for some ,  in an interval containing the nodes.

Now compare with:
3) 4) 3)

1 2 3

() () ()
() ; () ; ()

3! 4! 3!

f f f
E z E z E z

        

3) 4) 3) 4)

4 5

() () () ()
() () ; () ()

3! 4! 3! 4!

f f f f
E z z E z z

           

The term E1 can be a particular case of the general one if n = 1 (two nodes x0, x1, which suffice to esti-
mate f '(z)) and if '(z) = 0. The only way for this to happen —which is geometrically obvious for a
second-degree parabola (x)— is that z is the midpoint of both nodes, i.e., that both nodes lie symmet-
rically on both sides of z:
 if x0 = z − kh, x1 = z + kh; e.g. if x0 = z − h, x1 = z + h, IT CAN BE. (0.5p)

The term E2 could be another particular case if n = 2 (three nodes x0, x1, x2, which are more than
enough to estimate f '(z)) if their positions relative to z make '(z) = 0. There are ways to achieve this
result. For instance, one can choose three distinct nodes just anywhere and then choose z at either the
relative minimum or the relative maximum of (x). Finally write the positions of the nodes as
xi = z ± ki

 h where h is any distance of your choice (for instance, the one from z to the nearest node).
 If nodes chosen as described above, IT CAN BE. (0.5p)

The term E3 could be another particular case if n = 2 (three nodes x0, x1, x2, which are more than
enough to estimate f '(z)) if (z) = 0 (and the only way for this to happen is that z is one of the nodes).
You can choose any 3 distinct nodes with z being one of them, and the error term will have the
form E3. E.g.: if x0 = z; x1 = z + k1

 h; x2 = z + k2
 h  k1,

 k2,
 h 

R, IT CAN BE. (0.5p)

The term E4 cannot be such error term, because n should be equal to 1 in the term with (z) and equal
to 3 in the term with '(z), and no number can be 1 and 3 at the same time. IT CANNOT BE. (0.5p)

Finally the term E5 could be another particular case if n = 2 (three nodes x0, x1, x2, which are more than
enough to estimate f '(z)) with both (z)  0 and '(z)  0. This is what will happen most of the times if
you choose three distinct nodes at random positions with respect to z. Observe that E5 is like E3 plus
the added term we made the “effort” to eliminate in E3 by choosing the nodes and z in very specific

 11

relative positions. For instance, we can be sure that (z)  0 and '(z)  0 with the following configu-
ration —just imagine the plot of (x) to convince yourself—:
 if x0 = z + h; x1 = z + 2h; x2 = z + 3h, IT CAN BE. (0.5p)

7) There are several ways to do this. Since the error term is not asked, this time I will go with an ad-
hoc manipulation of Taylor series that shows how to use O(hn) remainders conveniently. First I write
the two expansions I’m obviously interested in:

2 3

2 3

()
(2) () ()2 4 ()

2!
()

(3) () ()3 9 ()
2!

f z
f z h f z f z h h O h

f z
f z h f z f z h h O h


    


    

I want to get rid of f '(z) so I can isolate f "(z) in terms of f (z), f (z + 2h), f (z + 3h). I can easily do that by
multiplying the first equation by 3, the second by 2, and subtracting:

2 3

2 3

3 (2) 3 () 6 () 6 () ()

2 (3) 2 () 6 () 9 () ()

f z h f z f z h f z h O h

f z h f z f z h f z h O h

     

     

Observe that O(h3) (pronounced “big O” of h3) remains a remainder of order 3 of h even after multi-
plied by 2 or by 3. Now subtracting:
 2 33 (2) 2 (3) () 0 3 () ()f z h f z h f z f z h O h      

Observe that O(h3) − O(h3) = O(h3) even if it could be a remainder of higher order, because by defini-
tion they are also remainders of order 3. In fact It could be 0 (if the first O(h3) were exactly the same
as the second one—which is not the case) and still be a O(h3).

Isolating f "(z):
2

() 3 (2) 2 (3)
() ()

3

f z f z h f z h
f z O h

h

      (2.5p)

A systematic application of Taylor series expansions yields the result given by anm_difftaylor:

anm_difftaylor(2, [0 2 3]);
warning: division by zero [...]
f"(z) = D + E where
D = (1/3 * f(z) - f(z + 2*h) + 2/3 * f(z + 3*h)) / h^2;
 Polynomial degree N = 2; Order of convergence O = 1. Error term:
E = 1/factorial(3) * (8 * f3(\xi_1) - 18 * f3(\xi_2)) * h
 for some \xi_i (i = 0,...,n), each between z and node xi.
|Etot| <= |E| + |Er| where |E| <= g1(h), |Er| <= g2(h), where:
 g1(h) = 5/3*M*h^1 where M >= |f3(x)| for all x bt the nodes and z.
 g2(h) = AF*ep = 2*h^-2*ep where ep >= |fi - fibar| for i = 0:n.
 |Etot| <= g1(h) + g2(h) = g(h) = 5/3*M*h^1 + 2*h^-2*ep
 h opt => g min => g'(h) = 1 * 5/3 * M * 1 - 2 * 2 * h^-3 * ep = 0 =>
 h_opt = (12/5*ep/M)^(1/3) = 1.338865900164 * ep^(1/3) * M^(-1/3)
 g_min = g(h_opt) = 3.347164750410847 * M^(2/3) * ep^(1/3)

The differentiation of interpolation polynomials and errors yields the results by anm_diffinterpol:

anm_diffinterpol(2, [0 2 3])
 f"(z) = D + E, where:
D = A0 f(z) + A1 f(z + 2*h) + A2 f(z + 3*h)
E = 1/6 f3(\xi_1) PI"(z) + 1/12 f4(\xi_2) PI'(z) + 1/60 f5(\xi_3) PI(z)
 Lagrange base functions Li(x), coefficients Ai in D, polynomial
PI(x), and coefficients Kj in E (principal term first), all executable
if symbolic package/toolbox installed:

syms x z h
L0 = (x - (z + 2*h)) * (x - (z + 3*h)) / (6 * h^2);
L1 = (x - z) * (x - (z + 3*h)) / (-2 * h^2);
L2 = (x - z) * (x - (z + 2*h)) / (3 * h^2);
A0 = subs(diff(L0, x, 2), x, z);
A1 = subs(diff(L1, x, 2), x, z);

 12

A2 = subs(diff(L2, x, 2), x, z);
PI = (x - z) * (x - (z + 2*h)) * (x - (z + 3*h));
PI2x = simplify(diff(PI, x, 2)); PI2z = subs(PI2x, x, z), K3 = 1/6 * PI2z;
PI1x = simplify(diff(PI, x, 1)); PI1z = subs(PI1x, x, z), K4 = 1/12 * PI1z;
PI0x = simplify(diff(PI, x, 0)); PI0z = subs(PI0x, x, z), K5 = 1/60 * PI0z;
Ai = [A0 A1 A2]
Kj = [K3 K4 K5]
syms f3xi1 f4xi2 f5xi3
E = K3 * f3xi1 + K4 * f4xi2 + K5 * f5xi3

PI2z = -10*h
PI1z = 6*h^2
PI0z = 0
Ai = [1/3/h^2, -1/h^2, 2/3/h^2]
Kj = [-5/3*h, 1/2*h^2, 0]
E = -5/3*h*f3xi1+1/2*h^2*f4xi2

It can also be done by indeterminate coefficients.

All of which is consistent with what we found manipulating Taylor series ad-hoc.

