
ADVANCED NUMERICAL METHODS 

Degree in Industrial Technology Engineering 

MAY 29, 2017 

TIME: 3 hours 29 points total 

N.B. Exercises needing a calculator should be solved with rounding to 6 significant digits. 
 

1.- A body moving along a 10 m-long underground pipe emits a signal whose 
intensity could be measured at 5 equally-spaced points according to the scheme below; 
the intensities obtained are the ones shown in the table. 
 

 

One wants to estimate the intensity of the signal at point X, located at a distance of 2 m 
from the pipe’s midpoint, via interpolation. 

a) From the estimation of truncation errors, decide whether the quadratic or the cubic 
interpolation is more advisable. (3 points) 

 
Some thoughts before calculating anything1. 

The truncation error is related with f 3)() for p2(x) (quadratic interpolation) or with f 4)() for 
p3(x) (cubic); and these are related with third- and fourth-order differences respectively, which 
can be seen in a table of differences, so I will build one of those (which are also good to 
estimate truncation errors, if we need that in order to answer the question). 

The nodes are equally spaced, so we can use divided or finite differences. The latter initially 
entail less manual calculations2. They also keep rounding errors neatly confined to 5 decimal 
digits in the table3. Moreover, by experience, exercises with equally-spaced nodes are usually 
expected to be solved using finite differences, so I’ll do that (but divided differences would also 
do just fine). 

As a general rule, remember to be alert to detect the possible appearance of spurious changes of 
sign at some column, with increasing absolute values towards its right. If that happens, we 
should not use those columns, and that would limit the order of the interpolation used. But here 
we have so few data points and so many significant digits4 that we may not reach the columns 
when that can happen. If that is the case, we should reason as follows. 

                                                            

1 You don’t need to write any of the following—just build the table of differences as soon as you realize 
it’s a good way to go, and later reason out according to what you see. This resolution is for teaching 
purposes more than for exam-revision ones. 
2 Although computers evaluate polynomials based on divided differences noticeably faster, because the 
quotients in them are computed once and for all, while the ones in q(t) are not. 
3 This may be nice when solving exercises by hand, but mostly irrelevant when using computers. 
4 In reality you don’t even sense something in an underground pipe remotely with precision on the order 
of 6 significant digits, as our data come with, all too often. This exercise seems quite academic. 

A B C D E 

1.61534 2.18174 2.25203 1.98124 1.56423 
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If the differences of order 2 are constant, all 5 data points can be generated by a polynomial p2 
of degree ≤ 2, and any 3, 4 or 5 points out of those 5 will give the same polynomial p2

  p3
  p4. 

Then the quadratic and the cubic interpolations would be the same thing. If the differences of 
order 2 are only approximately constant, the quadratic interpolation using 3 points (C, D, E, 
closest to X) and the cubic one using 4 points (B, C, D, E) would give very similar results. We 
could even choose the quadratic one for simplicity. And if the differences of order 2 are not 
even close to constant, in principle a cubic interpolation would be more advisable in order to 
capture more of the behavior of f. Furthermore, if the differences of order 3 are not close to 
constant, the quartic interpolation using all 5 points could be considered—but the exercise 
statement disregards it. Also note that the point X where we have to estimate f is not particularly 
close to the interval ends, so the Runge effect is not to be feared so much, especially when 
considering such low-degree polynomials. 

Let’s finally calculate the table of finite differences and see what we see. I’ll do it with Octave, 
but this is also easy to do by hand and/or with a calculator: 

xi = linspace(0, 10, 5)                 % equally-spaced nodes 
xi =    0        2.5           5         7.5         10 

yi = [1.61534  2.18174  2.25203  1.98124  1.56423]; 
[Diy0, table] = anm_tablefd(xi, yi);    % table of finite differences 
tchar = anm_prettyprintable(table, 6) 

i      xi    ^0f(xi)        ^1         ^2        ^3        ^3 
-      --    -------         ---         ---        ---        --- 
0       0    1.61534                                               
1     2.5    2.18174     0.56640                                   
2       5    2.25203     0.07029    -0.49611                       
3     7.5    1.98124    -0.27079    -0.34108    0.15503            
4      10    1.56423    -0.41701    -0.14622    0.19486    0.03983 

We see no spurious changes of sign, etc., and the three differences of order 2 are not even close 
to constant, so in principle p3 should capture the behavior of f better than p2 and a cubic 
interpolation is probably more advisable than a quadratic one (but maybe less than the quartic 
one). 

This should be enough to justify the answer, without numerically estimating truncation errors. 
However, since we are explicitly asked about them, let’s estimate them at X for p2 and for p3 as 
usual. This time let’s first do the calculations and then reason out according to what we see. 

An estimation e2,3 of the error of p2 at X can be obtained by adding the information at node B to 
the one at the last three nodes, C, D, E, already used by p2. The following equation is exact: 

  e(X) = f [C, D, E, X] (X) = f [C, D, E, X] (X  C) (X  D) (X  E) 

but would need the value of f (X) to compute the divided difference in it (and then 
e(X) = f (X)  p2(X) is also exact and simpler). However we can estimate f [C, D, E, X] as 
f [C, D, E, B] = f [B,C, D, E] (because it is a difference of the same order 3 as the one being 
estimated, and hence related with the same derivative f 3); and because permutations of the nodes 
do not affect divided differences). Hence: 

  e(X)  e2,3 = f [B,C, D, E] (X  C) (X  D) (X  E) 

Using the relationship between divided and finite differences: 

  
3

2,3 3 3

( ) 0.19486
( )( )( ) ( )( )( )

3! 3!

f B
e X C X D X E X C X D X E

h h


         
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where 0.19486 is found in the table. With the change of variable x = C + ht = ht (h = 2.5): 

  2,3 3

0.19486 0.19486
( 1) ( 2) ( 1)( 2)

3! 3!
e ht h t h t t t t

h
       

At x = X = 7, t = (X  C) / h = (7  5) / 2.5 = 0.8 so:  

  2,3

0.19486
0.8( 0.2)( 1.2) 0.00623552

3!
e      

Similarly our estimation for the error of p3 at X would be, by incorporating the info on node A:  

  3,4 1.8 0.8 ( 0.2) ( 1.2) 0.000573
0.0398

552
4!

3
e         

where 0.03983 is also found in the table. 

We see that our estimation of the error of p3 is less than 10% of that of p2: 

  e3,4
 / e2,3 = 0.000573552 / 0.00623552 = 0.0919814225597864 

and conclude that p3 is more advisable than p2. 

Right?  
Not so fast: there’s much of a circular reference here. I.e., the conclusion we have drawn is 
partly based on the assumption that it is true. Note that e2,3, as calculated above, is precisely the 
term h3(X) that has to be added to p2(X) to obtain p3(X), so e2,3 = p3(X)  p2(X). Whenever we 
estimate the error of p2 like that, we are implicitly assuming that p3(X) is a better estimation of 
f (X) than p2(X), which is what we wanted to decide on! By that token, the cubic interpolation 
would always be better than the quadratic one, and we would not need to calculate any error 
estimation. 

Similarly e3,4, as calculated above, is precisely the term h4(X) that has to be added to p3(X) to 
obtain p4(X), so e3,4 = p4(X)  p3(X), and whenever we estimate the error of p3 like that we are 
implicitly assuming that p4(X) is a better estimation of f (X) than p3(X). 

Therefore, “from the estimation of truncation errors” (which is what the exercise asks), p3 would 
always be better than p2 (and p4 better than p3). Instead of calculating truncation error 
estimations, we should probably just look at the table of differences searching for spurious 
changes of sign and then reason out in the way in which we started. 

One might argue that the following makes a little bit more sense: assuming that p4(X), using all 
5 nodes, is a better estimation of f (X) than both p2(X) and p3(X), we can estimate the errors of 
p2(X) and p3(X) as their differences to p4(X). Of course this assumption is not granted either, but 
at least the circularity is not so clear because we are not assuming that p3 is “better” than p2 in 
order to decide precisely that5. Let’s follow this path and see what gives: 

We already have e3,4: e3,4 = p4(X)  p3(X) = 0.000573552 

As for e2,4: e2,4
 = p4(X)  p2(X) = [p4(X)  p3(X)] + [p3(X)  p2(X)] = e3,4

 + e2,3 = 

  = 0.000573552 + 0.00623552 = 0.006809072 

So our estimation of the error of p3(X) is still less than 10% of that of p2(X): 

  e3,4
 / e2,4 = 0.000573552 / 0.006809072 = 0.0842335049475171 

In this case there is no apparent contradiction: p4(X) can indeed be a much better approximation 
to f (X) than both p2(X) and p3(X), and still p3(X) be better than p2(X). However –and it is not 

                                                            

5 But we are assuming that p4 is better than p3, which amounts to the same… 
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hard to find such cases– imagine that p2(X) = 1, p3(X) = 1.1, p4(X) = 0.9 (or 0.99). Is p3 
better than p2? Not according to p4, which is supposedly the best of the three! 

The truth is that one cannot automatically assume that adding a new node makes the new 
interpolation polynomial any better, and that is exactly the principle applied when we estimate 
truncation errors in the usual way. 

Here is a figure with the three polynomials.  

  

Finally, something intriguing for you. The inverse error estimation ratios are:  
  e2,4

 / e3,4
 = 0.006809072 / 0.000573552 = 11.8717605378414 

  e2,3
 / e3,4 = 0.00623552 / 0.000573552 = 10.8717605378414 

I ignore why all the decimal digits coincide.  
 

b) Using a numerically optimal method, and according to the answer to the previous 
section, estimate the intensity of the signal at point X. (2 points) 

 
“Numerically optimal” means we have to evaluate p3(X) using the Hörner-like algorithm. In this 
case we will be using nodes B, C, D, E, so: 

  x = B + t h = 2.5 + 2.5 t  t = (x  2.5) / 2.5 

   t(x = X = 7) = (7  2.5) / 2.5 = 1.8 

and the finite differences to use are the last elements of last 4 rows. We must evaluate q(1.8): 

  ( ) 2.18174 0.07029 0.34108 0.19486
1 2 3

t t t
q t

     
         

     
 

  
( 1) ( 1)( 2)

2.18174 0.07029 0.34108 0.19486
2! 3!

t t t t t
t

  
      

  
1 2

2.18174 0.07029 0.34108 0.19486
2 3

t t
t
            

 

  

ˆ0.0129906

ˆ0.3540706

ˆ0.14162826

ˆ0.07133826

0.12840888

2.0

0.8 0.2
2.18174 1.8 0.07029 0.34108 0.19486

2 3










        
    
 
 
 









5333112

2.05333112


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2.- a) We know the cubic spline with boundary conditions determined by the nodes 
x0 < x1 < … < xn and the values f (x0), f

 (x1), …, f (xn), f
 '(x0), f

 '(xn) is optimal. Explain in 
what sense, and state precisely the corresponding theoretical result. (1.5 points) 

 
Theory (straight from the Classroom Notes).  
 

b) One wants to build a quadratic spline of class C1 with the nodes x0 < x1 < … < xn 
and the corresponding ordinates y0, y1, …, yn. Can it be done ensuring that 
f '(x0) = f '(xn) = 0? Justify the answer. (1.5 points) 

 
No. The first polynomial piece p0(x) of degree ≤ 2 is uniquely determined by the three 
conditions p0(x0)

 = y0, p0'(x0)
 = 0, p0(x1)

 = y1 (because of the uniqueness of osculating 
polynomials). Call p0'(x1)

 = y'1. Then, for the same reason, the second polynomial piece p1(x) 
of degree ≤ 2 is uniquely determined by the three conditions p1(x1)

 = y1, p1'(x1)
 = y'1, 

p1(x2)
 = y2 (the second one because s  C1). Etc., until the last piece pn1(x), which will also be 

uniquely determined. It would be a big coincidence that its derivative at xn is precisely 0 (xn can 
be anywhere). 

An even simpler way to prove this is with only two nodes (because a counterexample suffices to 
prove the general statement is false). If y0

 ≠ y1, we would need a 2nd-degree parabola whose first 
derivative vanishes on two different points and is not constant, which is not possible because it 
must be linear. 

3.- Calculate  cos

0

xe dx


   with 0.5% ‘precision’ using Gauss quadrature. (3.5 points) 

 
If I had the Gauss-Legendre quadrature table I would probably use it; but since I don’t, I will 
apply the most obvious change of variable. My suspicion is that the integral will become one of 
Gauss-Chebyshev, for which we don’t need any table:  

  
1 1cos

0 1 2 1 2cos
sin 1 1

t
x t

x t
x dx dt

dt e
I e dx e dt

t t

 


 

  
  

     

And the integral does become a Gauss-Chebyshev one. The nodes are the Chebyshev ones, or 
the roots of Tn(t) = cos(n acos t), while the weights are all equal and their sum is  (see the 
theory for a quick justification of this). The following calculations with Octave are also easy to 
do with a calculator: 

f = @exp;                  % f(x) is just the numerator 
ti = 0; wi = pi;           % 1 node = Midpoint 
format long g 
Q1 = wi * sum(f(ti))       % quadrature rule with 1 node 

Q1 =     3.14159265358979 
ti = [-cos(pi/4) cos(pi/4)], wi = pi / 2 

ti =    -0.707106781186548     0.707106781186548 
wi =       1.5707963267949 

Q2 = wi * sum(f(ti))       % with 2 nodes 
Q2 =     3.96026605279076 
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abs((Q2 - Q1) / Q2) * 100  % termination criterion: if <= 0.5 
ans =     20.6721818253613 

ti = [-cos(pi/2 / 3) 0 cos(pi/2 / 3)], wi = pi / 3 
ti =    -0.866025403784439      0     0.866025403784439 
wi =       1.0471975511966 

Q3 = wi * sum(f(ti)) 
Q3 =     3.97732196008232 

abs((Q3 - Q2) / Q3) * 100 
ans =    0.428828932199507 

Since this is less than 0.5, we’ll stay with I  3.97732196008232 

Additionally we can check that the 0.5% is indeed a precision and not just a termination 
criterion: 

Q = quadgk(@(x) exp(cos(x)), 0, pi)  % adaptive Gauss-Konrod, precise! 
Q =     3.97746326050642 

abs((Q3 - Q) / Q) * 100 
ans =  0.00355252619201071 

So yes, actually much better than 0.5%. 

Finally, if you don’t find the change of variable cos x = t, you can still use Gauss-Chebyshev 
rules by adding the needed weight function “artificially”. First we apply the linear change of 
variable from [0,  ] onto [1, 1]:  

  
cos1cos 2 2

0 1
2 2

2

2

t
x

x t

dx dt

I e dx e dt
 



 



  
 

 



    

and now we multiply and divide by Chebyshev’s weight function: 

  

cos
22 21 1

1 2 1 2

2 1 ( )

1 1

t

e t f t
I dt dt

t t

 


  
 

 


 

 
   

where f (t) is the whole numerator. Now, with Octave: 

f = @(t) exp(cos(pi/2 + pi/2 * t)) * pi/2 .* sqrt(1 - t.^2); 
ti = 0; wi = pi;           % 1 node = Midpoint 
Q1 = wi * sum(f(ti))       % quadrature rule with 1 node 

Q1 =     4.93480220054468 
ti = [-cos(pi/4) cos(pi/4)]; wi = pi / 2; 
Q2 = wi * sum(f(ti))       % with 2 nodes 

Q2 =     4.98643721105870 
abs((Q2 - Q1) / Q2) * 100  % termination criterion: if <= 0.5 

ans =    1.03550908852323 

which is greater than 0.5, so we would have to continue. Below is what one would so obtain. 
Here, i is the number of nodes, Q_i is the result of the corresponding quadrature rule, and 
I is the exact value of the integral. The third column shows errors as percentages of I, and the 
last one stopping criterions as percentages of the latest values: 



  7

 i                   Q_i     (I – Q_i) / I     (Q_i – Q_{i-1}) / Q_i 
--                   ---     -------------     --------------------- 
 1      4.93480220054468         -24.0690%                       NaN 
 2      4.98643721105870         -25.3672%                   1.0355% 
 3      4.14116497563213          -4.1157%                 -20.4114% 
 4      4.10312333621605          -3.1593%                  -0.9271% 
 5      4.05847491494595          -2.0367%                  -1.1001% 
 6      4.03312526227304          -1.3994%                  -0.6285% 
 7      4.01835295370568          -1.0280%                  -0.3676% 
 8      4.00873655716945          -0.7862%                  -0.2398% 
 9      4.00215449295299          -0.6207%                  -0.1644% 
10      3.99745195462337          -0.5025%                  -0.1176% 
11      3.99397571790357          -0.4151%                  -0.0870% 

Observe that we would have to continue until i = 7 nodes to meet the stopping criterion 
(0.3676% < 0.5%), but the relative error would still be 1.0280%, so worse than 0.5%. Until 
reaching 11 nodes we would not obtain an error less than 0.5% with respect to the exact value of 
the integral. Gauss integration has lost much of its power in this way. Even Newton-Cotes rules 
do much better. 

This also shows that a given stopping criterion does not always guarantee the corresponding real 
precision. 

4.- Calculate   3 4 3 2

1 2
(7 )y y x dy dx    exactly with Newton-Cotes formulas and the 

least possible computational cost. Justify the choice of the formulas used. (3 points) 

 
It’s a polynomial of degree 1 in x, so the Midpoint rule will be exact in the x direction 
(polynomial degree of exactitude 1); and of degree 3 in y, so in that direction we need 3 nodes 
(polynomial degree 3—remember we gain one unit from the minimum 2 guaranteed by 
construction when it’s a N-C rule with an odd number of nodes). In this y direction we can use 
the open or the closed Newton-Cotes rule; I will use the closed one (Simpson) because it is 

more common6. Hence: 
3 4 33 2

0 1 21 2 1
(7 ) ( 4 )

3
yh

dx y y x dy dx f f f
 

     
 

    

   3 3 2 3 2 3 2

1

1
(7·2 2 ) 4(7·3 3 ) (7·4 4 )

3
dx x x x

           

   
3

01

1 1 2744 ˆ1260 56 2 2·1· (1260 56·2) 914.6
3 3 3xx dx h f        

We can also do it in the other order of integration: 

  
3 4 4 3 43 2 3 2 3 2

1 2 2 1 2
(7 ) (7 ) (3 1)(7 2)I dx y y x dy dy y y x dx dy y y               

  
4 3 2 3 2 3 2 3 2

2

1
(14 4 ) (14 2 4 2 ) 4(14 3 4 3 ) (14 4 4 4 ) 2744 3

3
y y dy                   

With Octave: 

                                                            

6 So I know its formula by heart: h/3 (f0
 + 4f1

 + f2). If you don’t, you can easily derive it via integration of 
Lagrange base functions, or of Newton polynomials with equally-spaced nodes, or via indeterminate 
coefficients. 
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format long g 
f = @(y) 14 * y^3 + 4 * y^2; 
1/3 * (f(2) + 4 * f(3) + f(4)) 

ans =     914.666666666667 

And, to be sure, we can also calculate the exact value of the integral using Barrow’s Law 
(Fundamental Theorem of Calculus) and go home with peace of mind: 

  
44 3 4 3 4 3

3 4 3 33 2

1 2 1 1
2

4 4 2 2
(7 ) 7 7 7

4 3 4 3 4 3

y

y

y y
dx y y x dy dx x dx x x





      
            

      
     

  
32

3

1
1

56 56 56 ˆ420 420 420(3 1) (9 1) 914.6
3 3 2 6

x
dx x x

            
   

   

just like before. 

5.- The position in space of a moving body is described by the following system of 
differential equations:  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t x t y t t z t

y t x t y t z t

z t t x t y t z t

   
     
    

 

At the initial instant the body is at point (1, 0, −1). Use the Enhanced Euler (Heun) 
method to estimate its position at instants 0.1 and 0.2 (step size h = 0.1). (5.5 points) 

 
We can obtain the advance formula of the Enhanced Euler or Heun method from the one of the 

Trapezoidal method: 1 1
1

( , ) ( , )

2
n n n n

n n n

f t y f t y
y y h 




   

and substituting yn+1 = yn
 + f (tn,

 yn)
 hn (Euler) on its right-hand side to obtain the (explicit) 

Heun method: 1
1

( , ) ( , ( , ) )

2
n n n n n n n

n n n

f t y f t y f t y h
y y h



 
   

Now, if we want, we can rewrite this with the typical Runge-Kutta notation in terms of ki, with 
tn+1 = tn

 + hn, and, for systems, with vector instead of scalar notation:  

  

( , )

( , )

2

n n

n n n

t h

t h h



  


 

1 n

2 n 1

1 2
n+1 n

k f y

k f y k

k k
y y

 

Now calling 
1

2

3

( )

( )

( )

x t y

y t y

z t y

   
       
      

y  

the system to be solved becomes 
1 2 3

1 2 3

1 2 3

( , )

y y ty

y y y t

ty y y

  
       
   

y f y  

and the initial conditions: 0

1

0 ; 0

1

t

 
    
  

0y . 
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We are asked to take two steps of size h = 0.1. Everything is ready for an almost-literal 
transcription to Octave, showing both the calculations to be done and their numerical results: 

format long g 
f = @(t, y) [y(1)-y(2)+t*y(3); -y(1)-y(2)+y(3); t*y(1)+y(2)-y(3)]; 
h = 0.1; t0 = 0; t1 = h; t2 = 2 * h; 
y0 = [1; 0; -1]; 
k1 = f(t0, y0) * h               % k1 for 1st step 

k1 =               0.1 
                  -0.2 
                   0.1 

k2 = f(t0 + h, y0 + k1) * h      % k2 for 1st step 
k2 =             0.121 
                 -0.18 
                 0.081 

y1 = y0 + (k1 + k2) / 2          % 1st step completed 
y1 =            1.1105 
                 -0.19 
               -0.9095 

k1 = f(t1, y1) * h               % k1 for 2nd step (overwritten) 
k1 =          0.120955 
                -0.183 
              0.083055 

k2 = f(t1 + h, y1 + k1) * h      % k2 for 2st step (overwritten) 
k2 =         0.1439166 
              -0.16849 
             0.0699736 

y2 = y1 + (k1 + k2) / 2          % 2nd step completed 
y2 =         1.2429358 
             -0.365745 
            -0.8329857 

We can also check with our function anm_ode: 

[tout, yout] = anm_ode(f, [0 0.2], y0, 2, 'Heun') 
tout =               0                   0.1                   0.2 
yout =               1                1.1105             1.2429358 
                     0                 -0.19             -0.365745 
                    -1               -0.9095            -0.8329857 

The numbers coincide exactly, so  
 the position at t = 0.2 is estimated to be (x2,

 y2,
 z2) = (1.2429358, 0.365745, 0.8329857) 

6.- Find a and b for the method yn = yn2
 + h [a fn

 + b fn3] to be convergent with 
the maximum possible order. Is the method obtained explicit or implicit? Of how many 
steps? Justify the answers. (3 points) 

 
The method is implicit (unless a turns out to be zero) because the unknown yn appears also on 
the right-hand side of the advance formula used to obtain it, where fn = f (tn,

 yn). In other words, 
the advance formula is an implicit equation in the unknown yn. 

The number of steps is k = 3 (unless b turns out to be zero) because the maximum index is n and 
the minimum one is n  3; k = n  (n  3) = 3 (the 1st step being from tn3 to tn2, the 2nd one 
from tn2 to tn1, and the 3rd one from tn1 to tn). 
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To find a, b we apply the steps described in “the theory”. First we identify coefficients with the 
general linear multistep method’s advance formula:  

  
1

0 0

k k

n k i n i i n i
i j

y y h f 


  
 

     (k
 = 1) 

Since k = 3:  3 0 1 1 2 2 0 1 1 2 2 3 3n n n n n n n ny y y y h f f f f                    

To identify with the formula given it is easier to add 3 to all its indices: 

   3 1 3n n n ny y h a f b f      

Hence: 0 = 0; 1 = 1; 2 = 0; (3 = 1) 
  0 = b; 1 = 0; 2 = 0; 3 = a 

First characteristic polynomial: (z) = z + z3 
Second characteristic polynomial: (z) = b + a z3 

Consistency: (1) = 1 + 13 = 0 ok 
  '(z) = 1 + 3z2; '(1) = 1 + 3·12 = 2 = (1) = b + a 13  a + b = 2 

Stability: (z) = z + z3 = 0  z = 0, z = ±1 
so all the roots have complex modulus ≤ 1 and, the two with modulus 1, are simple: ok. 

Convergence: we will make sure that the method is consistent (by making a + b = 2) and have 
checked that it will stable, so it will be convergent, with order of convergence p, iff:  

  1

0 0

1 k k
m m

j j
j j

j j
m

  

 

   for m = 1, 2, …, p, but not p+1 (and with 00 = 1) 

m = 1:   1 1 0 01
1 1 1 3 0 3 2

1
b a b a a b             like before 

m = 2:   2 2 1 11 4 2
1 1 1 3 0 3 3 4 ,

2 3 3
b a a a b            

with order at least 2. Let’s see if it is greater than 2: 

m = 3:   3 3 2 21 26 4
1 1 1 3 0 3 9 9 12

3 3 3
b a a           

and since 26/3  12 (abusing notation a bit too much above) the order is not greater than 2 so  
  the order of convergence is p = 2 

7.- a) Obtain a numerical differentiation formula, as well as its error term in its 
simplest form, to estimate f '(z) from the values of f at the nodes x0, x1 = x0

 + h, 
x2 = x1

 + 2h, with z = x0
 + 0.5h. Do it using Taylor series. (4 points) 

 
I’m not sure I will immediately know how to manipulate Taylor series ad-hoc and I don’t have 
time to waste, so I will apply the general theory with remainder of the least possible order. In 
this case k = 1 (estimating 1st derivative), n = 2 (3 nodes—more than enough to estimate 
f ' ), h0 = h/2, h1 = h/2, h2 = 5h/2 (nodal locations), and  m = 2 (equal to n, for the 
remainder of the least possible order). As usual:  

  0 1 2

5
( )

2 2 2

h h h
f z D E A f z A f z A f z E

                   
     
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 Then, if f  C3([x0,
 x2]), for some i between z and each node xi:  

  
2 33)

0
0

( )( )
( ) ( ) ( )

2 2! 2 3! 2

fh f z h h
f z A f z f z

               
    

 

  
2 33)

1
1

( )( )
( ) ( )

2 2! 2 3! 2

fh f z h h
A f z f z

             
    

 

  
2 33)

2
2

( )5 ( ) 5 5
( ) ( )

2 2! 2 3! 2

fh f z h h
A f z f z E

              
    

 

  
2 2 2

0 1 2 0 1 2 0 1 2

0
1 0

5 ( ) 25
( ) ( )

2 2 2 2! 4 4 4

h h h f z h h h
f z A A A f z A A A A A A

               
   
 

 

  
3 3 33) 3) 3)

0 1 2
0 1 2

0

( ) ( ) ( ) 5

3! 2 3! 2 3! 2

f f fh h h
A A A E

               
     

 

The first three equations are the same we would get by the method of indeterminate coefficients. 
They form a 33 linear system which we solve for A0, A1 and A2 (or, rather, for ai = h Ai so that 
we can manipulate a purely numeric augmented matrix): 

  2 1

3 1

1 1 1 0 1 1 1 0 1 1 1 0

1 2 1 2 5 2 1 1 1 5 2 0 2 6 2

1 4 1 4 25 4 0 1 1 25 0 0 0 24 0

R R

R R

     
                     

     

 

From the third equation, A2
 = 0 (so x2 has nothing to offer to estimate f '(z)! We know that 

can happen…) Substituting into the second equation, a1 = 1  A1 = 1 / h. And into the 
first, A0 = 1 / h. Therefore the formula is: 

  
1 1 ( 2) ( 2)

( )
2 2

h h f z h f z h
f z f z f z E E

h h h

                
   

 

Now we can find the error term E by substituting Ai into the fourth equation above: 

  
3 3 33) 3) 3)

0 1 2
0 1 2

( ) ( ) ( ) 5
0

3! 2 3! 2 3! 2

f f fh h h
A A A E

                
     

 

  
3 3 3 33) 3)3) 3)

0 01 1
0 1

( ) ( )( ) ( )1 1
0

3! 2 3! 2 6 2 6 2

f ff fh h h h
E A A

h h

                         
       

 

  
3 3) 3 3) 3) 3)2 2

3)0 1 0 1( ) ( ) ( ) ( )
( )

48 24 2 24

h f h f f fh h
E f

h

   


   
     

for some  between 0 and 1 and, therefore, also between x0 = z  h/2 and x1 = z + h/2. (Here we 
have applied Weierstrass’s (sometimes called Bolzano’s) Intermediate Value Theorem: if 
f  C3([0,

 1]), there must exist some intermediate point  where f 3) takes as value the 
arithmetic mean of f 3)(0) and f 3)(1), because a mean is always an intermediate value between 
the maximum and the minimum). 

Of course by now you have already noticed that the formula obtained is exactly like one of the 
first ones studied in the chapter, only substituting h for h/2, so the error term can also be 
obtained as we did there and then change h for h/2. Or manipulating Taylor series ad-hoc, 
which, in this case, is very easy. I’m leaving that exercise for you. 

Finally, let’s check that the info given by our function anm_difftaylor, which implements 
this theory systematically, is compatible with what we found: 
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k = 1; hi = [-1/2 1/2]; m = 2; 
anm_difftaylor(k, hi, m); 

f'(z) = D + E   where   D = sum(Ai .* f(xi))   where: 
    xi = z + h*[-1/2 1/2]   and   Ai = [-1 1]/h   so: 
D = (-f(z - 0.5*h) + f(z + 0.5*h)) / h; 
    Polynomial degree N = 2;  Order of convergence O = 2. 
    Error term: 
E = 1/factorial(3) * (-1/8 * f3(\xi_0) - 1/8 * f3(\xi_1)) * h^2 
    for some \xi_i (i = 0,...,n), each between z and node xi. 
|Etot| <= |E| + |Er|  where  |E| <= g1(h),  |Er| <= g2(h), where: 
g1(h) = 1/24*M*h^2  where M >= |f3(x)| for all x bt nodes and z. 
g2(h) = AF*ep = 2*h^-1*ep where ep >= |fi - fibar| for all i = 0:n. 
|Etot| <= g1(h) + g2(h) = g(h) =  1/24*M*h^2 + 2*h^-1*ep 
h opt => g min => g'(h) = 2 * 1/24 * M * h - 1 * 2 * h^-2 * ep = 0 
=> h_opt = (24*ep/M)^(1/3) = 2.8844991406148 * ep^(1/3) * M^(-1/3) 
g_min = g(h_opt)  =  1.040041911525952 * M^(1/3) * ep^(2/3) 

Both D and E coincide, except that anm_difftaylor returns the error term E prior to 
applying Weierstrass’s Intermediate Value Theorem (because this is something that can’t 
always be done).  
 

b) Justify if the formula obtained in section a) would give the exact value of 
f '(x0

 + 0.5h) for this function:  

 1

1

( )
( )

( )

q x x x
f x

r x x x


  

 

where q and r are polynomials of degrees 2 and 3, respectively. (0.5 points) 

 
A posteriori we know that our formula uses only two nodes (because multiplying the third nodal 
ordinate by zero is not really using it7). Therefore the situation is exactly as if, from the 
beginning, we look for the formula of two nodes. To find the two coefficients we can impose 
two conditions, namely, the exact differentiation of the monomials 1, x, and therefore also of 
any linear combination of them. Hence the polynomial degree will be N ≥ 1. However, from the 
theory, we know that when we are estimating f '(z) with an even number of nodes symmetrically 
located on both sides of z, the polynomial degree increases exactly by 1. In our case, N = 2. 

On the other hand, since the nodes used by the formula are x0 and x1, both ≤ x1, the only 
polynomial piece of f (x) that is actually evaluated is p(x), which is of degree 2, leaving r(x) (of 
degree 3) unused. This means that the polynomial degree N = 2 is enough and, save rounding 
errors  the derivative said is indeed calculated exactly. 
 

c) For f (x) = Ln(3x), x0 = 2, and precision  =104, calculate the optimal step 
size hopt to apply the formula obtained in section a). (1.5 points) 

 
Calling E the truncation error, Er = D  D̄ the rounding error, and Etot the total error: 

  Etot = f '(x)  D̄ = (f '(x)  D) + (D  D̄) = E + Er 

so  | Etot
 | ≤ | E | + | Er

 | 

                                                            

7 Simpson would agree (not only Thomas, even Bart). 
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Now  
2 2

3) ( )
24 24

h h
E f M
   

where M is an upper bound of | f 3)( )| for  between the nodes. 

Regarding Er: | Er
 | ≤  ·AF 

where the amplification factor AF is: 0 1

1 1 2
AF A A

h h h
      

Hence  
2 2

( )
24tot

h
E M g h

h
    

We minimize g(h) at the optimal step size hopt by making g'(hopt) = 0: 

  2 3
2 24

2 0
24

opt
opt opt

h
M h h

M

      

which also agrees with the output of anm_difftaylor above. 

We’re told that  = 104. As for M:  

  1 2 3)
3

1 2
( ) log(3 ) ( ) 3 ( ) ( )

3
f x x f x x f x x f x

x x
            

This is a strictly monotonically decreasing function from x0
 = 2 to the right (where z and the 

other node lie), so we can take M = 2 / 23 = 0.25. Substituting values: 

format long g 
ep = 1e-4; M = 0.25; 
h_opt = (24 * ep / M)^(1/3) 

h_opt =    0.212531713836522 

Hence the optimal step size is 0.2125317138365opth   

It is so large because the precision  = 104 is too bad. A more realistic value, for double-
precision arithmetic, would be: 

f = @(x) log(3 * x); 
ep = eps(f(2)) / 2       % see "the theory" for explanation on this 

ep = 1.11022302462516e-016 
h_opt = (24 * ep / M)^(1/3) 

h_opt = 2.2006981968802e-005 


