ADVANCED NUMERICAL METHODS

DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING

JUNE 23, 2015

N.B.: The exam will be sat uninterruptedly (without a break) and will be marked over 24 points.

EXERCISE 1

(6 points)

(6 points)

A student wants to interpolate some function f(x) in the interval [1.74, 6.26] using 5 nodes. Working with 3 or more significant digits:

a) Calculate the nodes she will use to minimize the maximum absolute error in the interval. (1p)

In case 5 nodes were not enough, the student eventually decides to use 6, and evaluating f(x) on them she obtains the following table (rounded to 3 significant digits):

		x_i	1.82	2.4	3.42	4.58	5.6	6.18	
		$f(x_i)$	0.844	0.309	-0.249	-0.249	0.309	0.844	
b)	Calculate the	e table of	difference	es.					(1p)
c)	Calculate the interpolation polynomial $p_3(x)$ of degree ≤ 3 by the last four nodes. (1p)								
d)) Estimate $f(5.1)$ evaluating $p_3(x)$ optimally.							(1p)	
e)	Prove the ex from the Ne	pression wton poly	ynomials o	e(z) = f[of degrees	x_0, x_1, \dots, x_n <i>n</i> and <i>n</i> +	x_n, z] $\Pi(z)$ 1.			(1p)
f)	Estimate the error made in part d).							(0.5p)	
a)	Knowing th	at the in	ternolated	function	was $f(x)$:	$=\cos(\pi x)$	calculate	the error	actually made

g) Knowing that the interpolated function was $f(x) = \cos(\pi x)$, calculate the error actually made in d), compare it with the estimation in f), and comment on the results. (0.5p)

EXERCISE 2

Let $I = \int_{1}^{3} f(x) dx$. Working with 5 decimals:

a) Apply the compound midpoint rule to estimate *I* from the data in this table: (1p)

$$x_i$$
1.251.752.252.75 $f(x_i)$ 0.53710.19000.03840.0044

b) Knowing that the error term of the compound midpoint rule is

$$E = \frac{b-a}{6}h^2 f''(\xi) \quad \text{for some } \xi \in (a,b)$$

and that $|f''(x)| \le 0.89617 \quad \forall x \in \mathbb{R}$, find an upper bound of the absolute error made in a). (1p)

- c) Find how many subintervals will guarantee that the error does not exceed $\varepsilon = 0.005$. (1p)
- d) Knowing that the data above correspond to $f(x) = e^{-x^2}(x^2 + 1)$, explain what kind of Gaussian quadrature you would use to approximate *I*, and apply it to obtain *I* with the precision indicated in part c). (Use the nodes and coefficients of the final Appendix.) (2.5p)
- e) According to the results of c) and d), what rule guarantees the required precision with less computational cost: the compound midpoint rule or the Gaussian one of d)? Explain. (0.5p)

EXERCISE 3

(6.5 points)

The movement of the system of springs of the figure in the Appendix is governed by the system:

$$\begin{cases} m_1 \frac{d^2 y_1}{dt^2} = -(k_1 + k_2) y_1 + k_2 y_2 \\ m_2 \frac{d^2 y_2}{dt^2} = k_2 y_1 - k_2 y_2 \end{cases}$$

where y_1 , y_2 are the displacements of the masses m_1 , m_2 from their equilibrium positions, and k_1 , k_2 are the springs' elasticity constants.

For $m_1 = m_2 = 1$, $k_1 = 1$, $k_2 = 2$ and the initial conditions: $y_1(0) = 1$, $y'_1(0) = 0$, $y_2(0) = 1$, $y'_2(0) = 0$, working with 2 decimals:

- a) Transform the system of differential equations above into one of order 1. (1p)
- **b)** Estimate the displacements y_1 , y_2 at t = 1 with the Runge-Kutta method of order 4. (3p)
- c) Knowing that the characteristic polynomial of the Jacobian matrix associated to the system obtained in part a) is $p(\lambda) = \lambda^4 + 5\lambda^2 + 2$, and that the absolute stability regions of the RK1, RK2, RK3, RK4 methods are those shown in the figure in the Appendix, is the step size h=1adequate to solve the problem using RK4? Justify the answer. (2p)
- d) Say which of the methods in the figure are adequate, and which are not, to solve the problem with step size h = 0.5. (0.5p)

EXERCISE 4

One wants to estimate $f^{(3)}(z)$ using equally-spaced nodes from $x_0 = z$ to its right.

- a) What is the least number of nodes one needs to use?
- b) Using four nodes (from $x_0 = z$ to $x_3 = z+3h$), obtain the numerical differentiation formula using Taylor series expansions (without needing to obtain its error term). (2p)
- c) Knowing that the error term can be written in the form $E = -3f^{4}(\xi)h/2 + O(h^2)$ for some $\xi \in [z, z+3h]$, estimate the optimal distance between nodes h_{opt} . Write the result in terms of $M \ge |f^{4}(\xi)|$ and of $\varepsilon \ge |f_i \overline{f_i}|$. (1p)

For $f(x) = 2\sin(2x)$, $z = \pi/12$, and for Matlab's usual arithmetic (considering $\varepsilon = 10^{-16}$):

- d) Estimate numerical values of h_{opt} and of the expected upper bound of the absolute error. (1p)
- e) To calculate these values we have accepted some assumptions that are not exactly satisfied. Say at least one. (0.5p)
- f) Since we have accepted assumptions that are not quite satisfied, one may want to check the estimations of part d) experimentally. The final figure in the Appendix has 10^7 points. Each one has as abscissa some random value of *h*, and as ordinate the absolute error made when estimating $f^{(3)}(z)$ using that value of *h*. Explain if your results in d) are good or not. (0.5p)

See Appendix in separate sheet

(5.5 points)

(0.5p)

Appendix:

rodes and weights for part dy of excletise 2.							
n = 1	$x_0 = -3^{-1/2}, x_1 = 3^{-1/2}$	$A_0 = A_1 = 1$					
n=2	$x_0 = -0.77460, x_1 = 0, x_2 = 0.77460$	$A_0 = A_2 = 0.55556, A_1 = 0.88889$					
<i>n</i> =3	$x_0 = -0.86114, x_1 = -0.33998, x_2 = 0.33998, x_3 = 0.86114$	$A_0 = A_3 = 0.34785,$ $A_1 = A_2 = 0.65215$					
<i>n</i> =4	$x_0 = -0.90618, x_1 = -0.53847, x_2 = 0,$ $x_3 = 0.53847, x_4 = 0.90618$	$A_0 = A_4 = 0.23693,$ $A_1 = A_3 = 0.47863, A_2 = 0.56889$					
n=5	$x_0 = -0.93247, x_1 = -0.66121, x_2 = -0.23862, x_3 = 0.23862, x_4 = 0.66121, x_5 = 0.93247$	$A_0 = A_5 = 0.17132, A_1 = A_4 = 0.36076, \\ A_2 = A_3 = 0.46791$					

Nodes and weights for part d) of exercise 2:

Figures of the exercise of Initial Value:

