ADVANCED NUMERICAL METHODS

DEGREE IN INDUSTRIAL TECHNOLOGY
MAY 12,2015

PART 1

1.- a) Given the following table of data:

\boldsymbol{x}_{i}	1.1	1.2	1.3	1.4	1.5	1.6
$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	0.14927	0.14358	0.13065	0.10998	0.08120	0.04406

approximate $f(1.37)$ by means of an interpolation polynomial of degree 3 , using the most appropriate nodes and evaluating the polynomial optimally. Estimate the error made in the approximation. Operate with rounding to 5 decimal digits.
b) Using the nodes $1.2,1.3,1.4$ and 1.5 , estimate the value of x for which $f(x)=0.12$. Operate with rounding to 5 significant digits.
2.- From this expression of the truncation error of the interpolation polynomial:

$$
e(x)=f\left[x_{0}, \ldots, x_{n}, x\right] \Pi(x) \quad \text { with } \quad \Pi(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

prove that when the nodes are uniformly spaced, and knowing $f\left(x_{n+1}\right)$, that error can be approximated by the expression

$$
\begin{equation*}
e(x) \approx \frac{\Delta^{n+1} f\left(x_{0}\right)}{(n+1)!} t(t-1)(t-2) \cdots(t-n) \quad \text { with } \quad x=x_{0}+t h \quad \text { and } \quad h=x_{i+1}-x_{i} \tag{0.75p}
\end{equation*}
$$

3.- Define the Chebyshev polynomials of the 1 st kind, $T_{n}(t)$. State and prove the recurrence relation they verify and obtain their roots. Particularize to $T_{4}(t)$.
4.- a) Obtain a quadrature rule of interpolatory kind the form

$$
\int_{0}^{h} f(x) d x \approx h A_{0} f(h / 2)+h^{2}\left[B_{0} f^{\prime}(0)+B_{1} f^{\prime}(h)\right]
$$

and obtain the expression of its error term.
b) Derive the expression resulting from the composition of that formula N times in the interval $[a, b]$.
c) Compare this formula with the compound Newton-Cotes rules of the same polynomial degree of exactitude.
(1p)
d) Apply the compound formula with $N=3$ to the approximation of $\int_{0}^{\pi} \cos (x) d x$, and find a bound of the error made.

TIME: 1 hour and 45 minutes

ADVANCED NUMERICAL METHODS

DEGREE IN INDUSTRIAL TECHNOLOGY

MAY 12,2015

PART 2

1.- Solve the differential equation

$$
y^{\prime \prime \prime}-y^{\prime \prime}+2 y=\log t
$$

subject to $y(1)=-1, y^{\prime}(1)=0, y^{\prime \prime}(1)=1$, using the Enhanced Euler Method to estimate the solution and its derivatives at $t=1.1$ and $t=1.2$. Operate with rounding to 6 significant digits.
2.- Write the general expression of a linear multistep method. Comment on when it is explicit or implicit. Write the associated characteristic polynomials. Enunciate the conditions it must verify to be convergent.
(0.75p)
3.- Obtain a formula to estimate $f^{\prime \prime}(z)$ from $f(z-2 h), f(z)$ and $f(z+h)$:
a) From the interpolation polynomial $p_{2}(x)$.
b) Using Taylor series expansions.
c) Obtain the truncation error from the one made in the interpolation.

TIME: 1 hour and 15 minutes

