ÁLGEBRA LINEAL – Examen Final - Segunda parte (19 de Mayo de 2014)

1. Sea el producto escalar definido en \mathbb{R}^3 respecto de la base canónica $B = \{e_1, e_2, e_3\}$ por la matriz:

$$G = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 5 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

a) Determinar el valor del parámetro r para que el ángulo formado por los vectores x e y sea $\frac{\pi}{2}$ tal que:

$$\mathbf{x} = \begin{pmatrix} \mathbf{1} \\ \mathbf{r} \\ \mathbf{0} \end{pmatrix} \mathbf{y} = \begin{pmatrix} 2\mathbf{r} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} \mathbf{y} \quad \mathbf{r} > 0$$
 (0.25 puntos)

b) Obtener las ecuaciones cartesianas del subespacio ortogonal a

$$S = \left\{ \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 0 \end{pmatrix}, \forall x_1, x_2 \in \mathbb{R} \right\}.$$
 (0.5 puntos)

c) Calcular la matriz del producto escalar respecto de la base

$$\mathbf{B}' = \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}. \tag{0.5 puntos}$$

Solución:

a) El ángulo formado por los vectores \mathbf{x} e \mathbf{y} será $\pi/2$ \iff $\cos(\mathbf{x}, \mathbf{y}) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|} = \cos(\pi/2) = 0 \Leftrightarrow \langle \mathbf{x}, \mathbf{y} \rangle = 0$, es decir, ambos vectores serán

ortogonales. Entonces, obtendremos el valor de r imponiendo que

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0 = (1, r, 0) \cdot \begin{pmatrix} 3 & -1 & -1 \\ -1 & 5 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \cdot \mathbf{r} \\ 0 \\ 0 \end{pmatrix} = (3 - r, -1 + 5 \cdot r, -1) \cdot \begin{pmatrix} 2 \cdot \mathbf{r} \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \mathbf{r} \cdot (3 - r)$$

 \Leftrightarrow r = 0 y r = 3, pero como nos dicen que r>0 \Rightarrow r=3 es el valor de r buscado.

b) Para calcular el subespacio ortogonal a $S = \{(x_1 + x_2, x_1 - x_2, 0) \forall x_1, x_2 \in \mathbb{R}\}$ comenzamos hallando una base de él. Se observa claramente que $S = \operatorname{Span}\{(1,1,0) \ (1,-1,0)\}$ y además ambos vectores $(1,1,0) \ (1,-1,0)$ son libres, por lo que constituyen una base. Entonces, como sabemos que

$$\mathbf{S}^{\perp} = \left\{ \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \in \mathbb{R}^3 / \langle \mathbf{x}, \mathbf{y} \rangle = 0 \ \forall \, \mathbf{y} \in \mathbf{S} \ \right\}$$

para calcularlo basta imponer que \mathbf{x} sea ortogonal a los dos vectores de la base de \mathbf{S} , esto es:

$$0 = \langle (x_1, x_2, x_3), (1, 1, 0) \rangle = (x_1, x_2, x_3) \cdot \begin{pmatrix} 3 & -1 & -1 \\ -1 & 5 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} =$$

$$= (3 \cdot x_1 - x_2 - x_3, -x_1 + 5 \cdot x_2, -x_1 + x_3) \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \Rightarrow 0 = 3 \cdot x_1 - x_2 - x_3 - x_1 + 5 \cdot x_2 = 2 \cdot x_1 + 4 \cdot x_2 - x_3$$

$$0 = <(x_1, x_2, x_3), (1, -1, 0) > = (x_1, x_2, x_3) \cdot \begin{pmatrix} 3 & -1 & -1 \\ -1 & 5 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} =$$

$$= (3 \cdot x_1 - x_2 - x_3, -x_1 + 5 \cdot x_2, -x_1 + x_3) \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \Rightarrow 0 = 3 \cdot x_1 - x_2 - x_3 + x_1 - 5 \cdot x_2 = 4 \cdot x_1 - 6 \cdot x_2 - x_3 \Rightarrow$$

Las ecuaciones cartesianas de S^{\perp} son :

$$\begin{cases} 2 \cdot x_1 + 4 \cdot x_2 - x_3 = 0 \\ 4 \cdot x_1 - 6 \cdot x_2 - x_3 = 0 \end{cases}.$$

c) La matriz de este producto escalar en la nueva base $B' = \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} = \left\{ e'_1, e'_2, e'_3 \right\} \quad \text{es} \quad \text{la} \quad \text{que} \quad \text{tiene} \quad \text{por} \quad \text{elemento} \quad \text{genérico} \right\}$

 $G^* = (\langle e'_i, e'_j \rangle)_{i,j=1,2,3}$. Además, sabemos que está relacionada con la matriz G por la relación de congruencia $G^* = P^t \cdot G \cdot P$, siendo P la matriz de cambio de base, es decir, la que tiene por columnas las coordenadas de los vectores de B' respecto a la base canónica B:

$$G^* = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -1 & -1 \\ -1 & 5 & 0 \\ -1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -2 & -1 \\ 0 & 14 & -1 \\ 1 & 4 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -1 & 2 \\ -1 & 42 & 13 \\ 2 & 13 & 5 \end{pmatrix}.$$

2. Se consideran las matrices semejantes A y D siguientes (donde α, β, γ y δ son números reales):

$$A = \begin{pmatrix} \alpha & \beta & \gamma \\ 3 & -1 & 3 \\ 3 & \delta & 2 \end{pmatrix} \quad \mathbf{y} \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

- a) Decir cuáles son los autovalores de A así como sus multiplicidades algebraicas y geométricas. (0.5 puntos)
- b) Hallar α, β, γ y δ teniendo en cuenta los resultados del apartado anterior (Realizar el ejercicio sin calcular la traza ni el determinante de la matriz A). (1 punto)
- c) Hallar una matriz regular P tal que $A = P \cdot D \cdot P^{-1}$. (0.5 puntos)

Solución:

a) D es una matriz diagonal, por lo que al ser semejante a A ambas tendrán los mismos autovalores, es decir, los autovalores de A son $\lambda_1 = -1$ doble (multiplicidad algebraica $m_1 = 2$) y $\lambda_2 = 2$ simple (multiplicidad algebraica $m_2 = 1$). Además, A es una matriz diagonalizable, por ser semejante a la matriz diagonal D, por lo que asociado al autovalor $\lambda_1 = -1$ doble existirán dos vectores propios linealmente independientes, es decir, la multiplicidad geométrica de $\lambda_1 = -1$ es $\mu_1 = 2$. La multiplicidad geométrica del autovalor simple $\lambda_2 = 2$ es, obviamente, $\mu_2 = 1$.

- b) Para hallar los valores de α , β , δ y γ tenemos en cuenta que:

 $\bullet \mu_1 = 2 \Leftrightarrow \dim(V(-1)) = 2 \Leftrightarrow \operatorname{rango}\left(A + I\right) = 1 \Leftrightarrow \operatorname{rango}\left(\begin{matrix} \alpha + 1 & \beta & \gamma \\ 3 & 0 & 3 \\ 3 & \delta & 3 \end{matrix}\right) \Leftrightarrow \operatorname{todos\ los\ menores}$ de orden 2 de esta matriz deben ser $0 \Leftrightarrow \begin{cases} \delta = 0 \\ 3 \cdot \beta = 0 \Rightarrow \beta = 0 \\ 3 \cdot (\alpha + 1) - 3 \cdot \gamma = 0 \Rightarrow \alpha + 1 - \gamma = 0 \end{cases}$ y que: y que:

•
$$\mu_2 = 1 \Leftrightarrow \dim(V(2)) = 1 \Leftrightarrow \operatorname{rango}(A - 2 \cdot I) = 2 \Leftrightarrow \operatorname{rango}\begin{pmatrix} \alpha - 2 & 0 & \gamma \\ 3 & -3 & 3 \\ 3 & 0 & 0 \end{pmatrix} = 2 \Leftrightarrow$$

 $|A-2\cdot I|=0 \Leftrightarrow 3\cdot 3\cdot \gamma=0 \Rightarrow \gamma=0 \Rightarrow$ sustituyendo este valor en $\alpha+1-\gamma$

$$\Rightarrow \quad \text{la matriz A} = \begin{pmatrix} -1 & 0 & 0 \\ 3 & -1 & 3 \\ 3 & 0 & 2 \end{pmatrix}.$$

Se trata de hallar finalmente los vectores propios asociados a cada uno de los dos

$$V(-1) = \left\{ \mathbf{x} / (\mathbf{A} + \mathbf{I})\mathbf{x} = \mathbf{0} \right\} \Leftrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \xleftarrow{\text{por ser rango}(\mathbf{A} + \mathbf{I}) = \mathbf{I}} \to \mathbf{0}$$

$$x_1 + x_3 = 0 \ \forall x_2 \Rightarrow V(-1) = \text{Span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

$$V(2) = \left\{ \mathbf{x} / (\mathbf{A} - 2 \cdot \mathbf{I}) \mathbf{x} = \mathbf{0} \right\} \Leftrightarrow \begin{pmatrix} -3 & 0 & 0 \\ 3 & -3 & 3 \\ 3 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \xleftarrow{\text{por ser rango}(\mathbf{A} + 2\mathbf{I}) = 2} \Rightarrow$$

$$\begin{cases} x_1 = 0 \\ x_1 - x_2 + x_3 = 0 \rightarrow x_2 = x_3 \end{cases} \Rightarrow V(2) = \operatorname{Span} \left\{, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Por tanto, la matriz $P/D = P^{-1} \cdot A \cdot P \Leftrightarrow A = P \cdot D \cdot P^{-1}$ es $P = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

3. Sea f un endomorfismo de \mathbb{R}^6 del que se sabe que su polinomio característico es $p_A(x)=(x+2)^6$ y que:

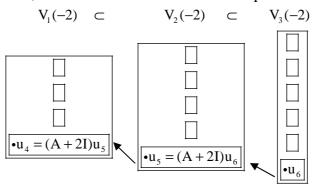
 $\dim V_1(-2) = \dim \ker (A + 2I) = 4$ y $\dim V_2(-2) = \dim \ker (A + 2I)^2 = 5$.

Obtener la forma de Jordan J de f y explicar cómo debe buscarse la base en la cual el endomorfismo está representado por la matriz J. (1 punto)

3

Solución:

El endomorfismo f tiene un único autovalor $\lambda=-2$ con multiplicidad algebraica m=6. Como $\dim(V_1(-2))=4 \Rightarrow \text{ van a existir sólo 4 vectores propios linealmente}$ independientes asociados a dicho autovalor y su forma canónica de Jordan va a contener 4 bloques triangulares J_i . Además como nos dicen que $\dim(V_2(-2))=5 \Rightarrow \text{el subespacio}$ maximal tiene que ser $V_3(-2)=\text{Ker}(A+2I)^3$, es decir, $\dim(V_3(-2))=6=\text{m}$. Entonces, para obtener la base en la que el endomorfismo f se representa a través de la forma canónica de Jordan, se considera esta cadena de subespacios:



Elegimos un vector $\mathbf{u}_6 \in V_3(-2) - V_2(-2)$ y hacemos $\mathbf{u}_5 = (A + 2 \cdot I) \cdot \mathbf{u}_6 \in V_2(-2)$ y seguidamente $\mathbf{u}_4 = (A + 2 \cdot I) \cdot \mathbf{u}_5 \in V_1(-2)$ (es vector propio). Finalmente, para completar la base se eligen otros 3 vectores propios asociados al autovalor $\lambda = -2$ linealmente independientes entre sí y con \mathbf{u}_4 : \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 . Por tanto, la base de Jordan será $\mathbf{b} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6\}$, ya que las imágenes por f de estos vectores son:

$$\begin{split} f(\mathbf{u}_1) &= A \cdot \mathbf{u}_1 = -2 \cdot \mathbf{u}_1, \ f(\mathbf{u}_2) = A \cdot \mathbf{u}_2 = -2 \cdot \mathbf{u}_2, \\ f(\mathbf{u}_3) &= A \cdot \mathbf{u}_3 = -2 \cdot \mathbf{u}_3, \\ f(\mathbf{u}_4) &= A \cdot \mathbf{u}_4 = -2 \cdot \mathbf{u}_4 \\ f(\mathbf{u}_5) &= A \cdot \mathbf{u}_5 \\ &= \mathbf{u}_4 - 2 \cdot \mathbf{u}_5, \\ f(\mathbf{u}_6) &= A \cdot \mathbf{u}_6 \\ &= \mathbf{u}_5 - 2 \cdot \mathbf{u}_6 \\ &=$$

$$\mathbf{J} = \begin{pmatrix} -2 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & |-2| & 0 & 0 & 0 & 0 \\ 0 & 0 & |-2| & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & |-2| & 1 & 0 \\ 0 & 0 & 0 & |0 & -2| & 1 \\ 0 & 0 & 0 & |0 & 0 & -2 \end{pmatrix}.$$

4. De la matriz
$$A = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & -1 & 3 & 5 \\ 0 & 0 & 2 & 5 \\ -2 & -6 & -3 & 1 \end{pmatrix}$$
 se sabe que cumple $L \cdot U = P^t \cdot A$ siendo L

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1/2 & -1/2 & 1 & 0 \\ 0 & 0 & 4/7 & 1 \end{pmatrix}, \mathbf{U} = \begin{pmatrix} 2 & -1 & 3 & 5 \\ 0 & -7 & 0 & 6 \\ 0 & 0 & 7/2 & 15/2 \\ 0 & 0 & 0 & 5/7 \end{pmatrix} \mathbf{y} \ \mathbf{P} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Responder razonadamente a las siguientes preguntas:

- a) ¿Cuál ha sido el último vector de pivotaje del proceso de eliminación Gaussiana con pivotaje parcial y cambio de escala? (0.25 puntos)
- b) ¿Qué elemento ha sido el pivote del paso k=2? (0.25 puntos)
- c) ¿Cuáles han sido los multiplicadores del primer paso? (0.25 puntos)
- d) Calcular el determinante de A y la segunda columna de su inversa utilizando la factorización anterior. (1.25 puntos)

Solución:

a) Como la matriz
$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \Rightarrow P^{t} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{bmatrix} F2 \\ F4 \\ F1 \\ F3 \end{bmatrix}, \text{ que es la matriz}$$

obtenida a partir de la matriz identidad realizando sobre ellas los mismos intercambios de filas que han sido necesarios en el proceso de pivotaje \Longrightarrow el último vector de

pivotaje, que es el que indica tales intercambios será $p = \begin{pmatrix} 2 \\ 4 \\ 1 \\ 3 \end{pmatrix}$.

- **b)** El pivote en el paso k=2 ha sido el elemento a_{42} , ya que la segunda componente del vector de pivotaje es 4, lo que indica precisamente que el pivote del paso 2 ha sido el $a_{42}=-7$. Este valor se deduce de observar la matriz triangular superior U y ver que el primer elemento de su segunda fila es -7.
- c) Los multiplicadores del primer paso son los que ocupan la primera columna de la matriz triangular inferior L, esto es, son: $m_{41} = -1$, $m_{11} = 1/2$, $m_{31} = 0$.
- d) Como se cumple la factorización $L \cdot U = P^t \cdot A$, tomando determinantes en esta igualdad:

$$\left|P^{t}\cdot A\right| = \left|L\cdot U\right| \Leftrightarrow (-1)^{n^{\circ} \text{invers.}} \cdot \left|A\right| = \left|L\right| \cdot \left|U\right| \Leftrightarrow (-1)^{3} \cdot \left|A\right| = 2 \cdot (-7) \cdot \frac{7}{2} \cdot \frac{5}{7} \Rightarrow \left|A\right| = 35, \quad donde$$

5

se ha tenido en cuenta que en el último vector de pivotaje $p = \begin{pmatrix} 2 \\ 4 \\ 1 \\ 3 \end{pmatrix}$ hay tres inversiones

respecto del orden natural {1,2,3,4}.

Para calcular la segunda columna de la matriz inversa de A, basta resolver el sistema $A \cdot \underline{x}_2 = (0 \ 1 \ 0 \ 0)^t$. Para ello, utilizamos la factorización de la matriz $P^t \cdot A = L \cdot U$, entonces, multiplicando por P^t en el sistema queda:

$$P^{t} \cdot A \cdot \underline{x}_{2} = P^{t} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \underline{c} \Leftrightarrow L \cdot U \cdot \underline{x}_{2} = \underline{c} \text{, por lo que se trata de resolver los dos}$$

sistemas triangulares siguientes:

$$U \cdot \underline{x}_{2} = \underline{y}_{2}, \quad L \cdot \underline{y}_{2} = \underline{c} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1/2 & -1/2 & 1 & 0 \\ 0 & 0 & 4/7 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{\text{por sust. progres.}}$$

$$\begin{cases} y_{1} = 1 \\ -y_{1} + y_{2} = 0 \rightarrow y_{2} = 1 \\ (1/2)y_{1} - (1/2)y_{2} + y_{3} = 0 \rightarrow y_{3} = 0 \\ (4/7)y_{3} + y_{4} = 0 \rightarrow y_{4} = 0 \end{cases} \Rightarrow$$

$$\begin{pmatrix} 2 & -1 & 3 & 5 \\ 0 & -7 & 0 & 6 \\ 0 & 0 & 7/2 & 15/2 \\ 0 & 0 & 0 & 5/7 \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{\text{por susti. regres.}} \begin{cases} 2x_{1} - x_{2} + 3x_{3} + & 5x_{4} = 1 \rightarrow x_{1} = 3/7 \\ -7x_{2} + & 6x_{4} = 1 \rightarrow x_{2} = -1/7 \\ (7/2)x_{3} + (15/2)x_{4} = 0 \rightarrow x_{3} = 0 \\ (5/7)x_{4} = 0 \rightarrow x_{4} = 0 \end{cases}$$

La segunda columna de la inversa de A es $\begin{pmatrix} 3/7 \\ -1/7 \\ 0 \\ 0 \end{pmatrix}$.

5.a) Estudiar la convergencia y velocidad de convergencia de los métodos de Jacobi

y Gauss-Seidel para el sistema
$$A \cdot x = b$$
, siendo A la matriz $A = \begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 4 \end{bmatrix}$.

(0.5 Puntos)

b) Calcular una aproximación de la solución del sistema $\mathbf{A} \cdot \mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ por el método

más rápido con una precisión del 6%, tomando como aproximación inicial el vector (0, 0, 0.07, 0.2). Trabajar con 3 dígitos significativos. (1 punto)

Solución:

a) La matriz A del sistema es estrictamente diagonal dominante, ya que |4|>|-1|=1; |4|>|-1|+|-1|=2; |4|>|-1|+|-1|=2; |4|>|-1|+|-1|=2; |4|>|-1|=1. Por tanto, tanto el método iterativo de Jacobi como el de Gauss-Seidel convergen. Además la matriz A cumple las condiciones del teorema de Stein-Rosenberg, ya que los elementos de A verifican $a_{ij}\leq 0 \, \forall \, i\neq j \, y \, a_{ii}>0 \, \forall \, i$, entonces, al ser los dos métodos convergentes, la alternativa que se va a cumplir es $0<\rho(T_G)<\rho(T_J)<1$, siendo $\rho(T_G)$ y $\rho(T_J)$ los radios espectrales de las matrices T asociadas a los métodos de Gauss-Seidel y de Jacobi, respectivamente. Es decir, va a converger más rápido el método de Gauss-Seidel. Se tiene además que la matriz A es simétrica, tridiagonal y definida positiva, ya que como puede observarse claramente todos los menores principales de A son positivos:

$$\begin{split} \Delta_1 &= 4 > 0; \ \Delta_2 = \begin{vmatrix} 4 & -1 \\ -1 & 4 \end{vmatrix} = 15 > 0; \\ \Delta_3 &= \begin{vmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{vmatrix} = 64 - 4 - 4 = 56 > 0; \\ \Delta_4 &= |A| = \frac{1}{\text{desarrollando por la 1° columna}} \begin{vmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{vmatrix} = 4 \cdot 56 - (16 - 1) > 0. \end{split}$$

Por tanto, para estas matrices se cumple la relación $0 < \rho(T_G) = (\rho(T_J))^2 < 1 \Rightarrow$ queda probado de otra forma que para este sistema el método de Gauss-Seidel es más rápido.

b) Se trata, según acabamos de comentar, de resolver el sistema por el método de Gauss-Seidel, cuyo algoritmo es:

$$\begin{cases} x_1^{(k+1)} = \frac{1}{4} \cdot \left(x_2^{(k)} \right) \\ x_2^{(k+1)} = \frac{1}{4} \cdot \left(x_1^{(k+1)} + x_3^{(k)} \right) \\ x_3^{(k+1)} = \frac{1}{4} \cdot \left(x_2^{(k+1)} + x_4^{(k)} \right) \\ x_4^{(k+1)} = \frac{1}{4} \cdot \left(1 + x_3^{(k+1)} \right) \end{cases}$$

Partiendo del vector $x^{(0)} = (0, 0, 0.07, 0.2)$ vamos haciendo iteraciones:

 $\mathbf{k} = 0$

$$x_1^{(1)} = \frac{1}{4} \cdot 0 = 0;$$
 $x_2^{(1)} = \frac{1}{4} \cdot (0 + 0.07) = 0.0175;$
 $x_3^{(1)} = \frac{1}{4} \cdot (0.0175 + 0.2) = 0.0544;$ $x_4^{(1)} = \frac{1}{4} \cdot (1 + 0.0544) = 0.264$

$$ightarrow$$
 Primera aproximación a la solución: $\mathbf{x}^{1)} = \begin{pmatrix} 0 \\ 0.0175 \\ 0.0544 \\ 0.264 \end{pmatrix}$.

El porcentaje de error que se comete en este primer paso es:

$$\begin{split} e_{rel} = & \frac{\parallel \mathbf{x}^{(1)} - \mathbf{x}^{(0)} \parallel_{\infty}}{\parallel \mathbf{x}^{(1)} \parallel_{\infty}} \Longrightarrow \\ e_{rel} & \times 100 = \frac{\max \left\{\mid 0 - 0 \mid, \mid 0.0175 - 0 \mid, \mid 0.0544 - 0.07 \mid, \mid 0.264 - 0.2 \mid\right\}}{\max \left\{\mid 0 \mid, \mid 0.0175 \mid, \mid 0.0544 \mid, \mid 0.264 \mid\right\}} \times 100 = \frac{0.064}{0.264} \times 100 = 24 \% > 6 \% \end{split}$$

k = 1

$$x_1^{(2)} = \frac{1}{4} \cdot 0.0175 = 0.00438;$$
 $x_2^{(2)} = \frac{1}{4} \cdot (0.00438 + 0.0544) = 0.0147;$ $x_3^{(2)} = \frac{1}{4} \cdot (0.0147 + 0.264) = 0.0697;$ $x_4^{(2)} = \frac{1}{4} \cdot (1 + 0.0697) = 0.267$

$$ightarrow$$
 Segunda aproximación a la solución: $\mathbf{x}^{2)} = \begin{pmatrix} 0.00438 \\ 0.0147 \\ 0.0697 \\ 0.267 \end{pmatrix}$

El porcentaje de error que se comete en este segundo paso es:

$$\begin{split} e_{\text{rel}} = & \frac{\parallel \mathbf{x}^{(2)} - \mathbf{x}^{(1)} \parallel_{\infty}}{\parallel \mathbf{x}^{(2)} \parallel_{\infty}} \Rightarrow \\ e_{\text{rel}} & \times 100 = \frac{\max \left\{\mid 0.00438 - 0\mid,\mid 0.0147 - 0.0175\mid,\mid 0.0697 - 0.0544\mid,\mid 0.267 - 0.264\mid\right\}}{\max \left\{\mid 0.00438\mid,\mid 0.0147\mid,\mid 0.0687\mid,\mid 0.267\mid\right\}} \times 100 = \\ = & \frac{0.0153}{0.267} \times 100 = 5.73\% < 6\% \Rightarrow \text{Nos quedamos con } \mathbf{x}^{(2)} \text{ como aproximación a la solución.} \end{split}$$

6) a) Definir: Elemento mejor aproximación mínimo-cuadrática de un vector f, perteneciente a un espacio euclídeo E, en un subespacio $H \subset E$. (0.25 puntos)

b) Se trata de calcular, por el procedimiento de mínimos cuadrados, la fórmula lineal que relaciona la fuerza F con el alargamiento x ($F = a_0 + a_1 \cdot x$) para un muelle, del que se disponen de los siguientes datos, en cuanto al alargamiento x producido al cargarle con las fuerzas siguientes:

F (en Kp)	10	20	30
x (en cm)	2	3.5	6

Realizar el ejercicio de las dos formas siguientes:

b.1) Resolviendo el sistema de ecuaciones normales.

(1 punto)

b.2) Utilizando polinomios ortogonales.

(1 punto)

Opérese con redondeo a 2 decimales.

Solución:

Sea E un espacio euclídeo y sea || || la norma inducida por el producto escalar a) definido en E, esto es, $||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. Sea también H un subespacio vectorial de E, entonces, considerando un vector $\mathbf{f} \in E$, se define el elemento mejor aproximación mínimo cuadrática de f en H, como aquel vector u∈ H que dista de f lo menos posible, esto es, que cumple: $\|\mathbf{f} - \mathbf{u}\| \le \|\mathbf{f} - \mathbf{v}\| \ \forall \ \mathbf{v} \in \mathbf{H}$.

Puede demostrarse que si H es de dimensión finita, tal elemento mejor aproximación u existe, es único y está caracterizado por la condición necesaria y suficiente siguiente: \mathbf{u} es el elemento mejor aproximación de \mathbf{f} en $\mathbf{H} \Leftrightarrow \mathbf{f} - \mathbf{u} \in \mathbf{H}^{\perp}$, siendo \mathbf{H}^{\perp} el subespacio ortogonal a H.

b.1) Se trata de encontrar la recta $F = a_0 + a_1 \cdot x$ que mejor se ajuste a los datos de la tabla dada. Si el ajuste fuera exacto se trataría de resolver el sistema sobredimensionado:

 $10 = a_0 + a_1 \cdot 2$ $20=a_0+a_1\cdot 3.5$ que no tiene solución, por lo que se resuelve en el sentido de los $30 = a_0 + a_1 \cdot 6$

mínimos cuadrados.

Se considera:
$$\mathbf{y} = \begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix} \in \mathbb{R}^3$$
 y el subespacio $H = \operatorname{Span}\{\mathbf{x_0}, \mathbf{x_1}\} = \operatorname{Span}\left\{\begin{pmatrix} 1 \\ 1 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ 3.5 \\ 6 \end{pmatrix}\right\}$. Se trata

de hallar el elemento $\mathbf{u} = \mathbf{a}_0 \cdot \mathbf{x_0} + \mathbf{a}_1 \cdot \mathbf{x_1}$ mejor aproximación de \mathbf{y} en H respecto al $\begin{aligned} & \text{producto escalar } < f \,, g > = \sum_{i=1}^{3} f_{i} \cdot g_{i} \;, \; \text{que como sabemos se obtiene imponiendo que} \\ & \mathbf{y} - \mathbf{u} \in H^{\perp} \Leftrightarrow \begin{cases} < \mathbf{y} - \mathbf{u}, \mathbf{x}_{0} > = 0 \\ < \mathbf{y} - \mathbf{u}, \mathbf{x}_{1} > = 0 \end{cases}, \; \text{sistema que conduce al sistema de ecuaciones normales:} \end{aligned}$

$$\begin{pmatrix} \langle \mathbf{x_0}, \mathbf{x_0} \rangle & \langle \mathbf{x_0}, \mathbf{x_1} \rangle \\ \langle \mathbf{x_0}, \mathbf{x_1} \rangle & \langle \mathbf{x_1}, \mathbf{x_1} \rangle \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a_0} \\ \mathbf{a_1} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{y}, \mathbf{x_0} \rangle \\ \langle \mathbf{y}, \mathbf{x_1} \rangle \end{pmatrix}$$

Calculando los productos escalares:

$$\langle \mathbf{x_0}, \mathbf{x_0} \rangle = 1^2 + 1^2 + 1^2 = 3, \ \langle \mathbf{x_0}, \mathbf{x_1} \rangle = \sum_{i=1}^{3} 1 \cdot \mathbf{x_i} = 2 + 3.5 + 6 = 11.5$$

 $\langle \mathbf{x_1}, \mathbf{x_1} \rangle = \sum_{i=1}^{3} \mathbf{x_i}^2 = 2^2 + 3.5^2 + 6^2 = 52.25$
 $\langle \mathbf{y}, \mathbf{x_0} \rangle = \sum_{i=1}^{3} \mathbf{y_i} \cdot 1 = 10 + 20 + 30 = 60, \ \langle \mathbf{y}, \mathbf{x_1} \rangle = \sum_{i=1}^{3} \mathbf{x_i} \cdot \mathbf{y_i} = 10 \cdot 2 + 20 \cdot 3.5 + 30 \cdot 6 = 270$

El sistema a resolver es:

$$\begin{pmatrix} 3 & 11.5 \\ 11.5 & 52.25 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 60 \\ 270 \end{pmatrix} \ \underline{\begin{array}{c} \text{haciendo} \ F_2 - \underline{11.5} \\ 270 \end{pmatrix}} \ \underline{\begin{array}{c} \text{haciendo} \ F_2 - \underline{\frac{11.5}{3}} F_1 \\ 0 & 8.21 \end{pmatrix}} \cdot \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 60 \\ 40.2 \end{pmatrix} \ \text{cuya} \quad \text{solución}$$
 es: $a_1 = 4.90, \ a_0 = 1.22 \ \rightarrow$

 $F=1.22+4.9 \cdot x$ es la fórmula lineal óptima en el sentido de los mínimos cuadrados que relaciona la fuerza F con el alargamiento x.

b.1) Resolvamos el mismo problema utilizando polinomios ortogonales. Para ello identificamos cada función $f:[2,6] \to \mathbb{R}$ con el vector $\mathbf{f} = \begin{pmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \end{pmatrix} = \begin{pmatrix} f(2) \\ f(3.5) \\ f(6) \end{pmatrix} \mathbf{y}$

consideramos como espacio vectorial E el conjunto de estos vectores con el producto escalar $< f, g> = \sum_{i=1}^3 f(x_i) \cdot g(x_i)$. En este caso el vector a aproximar es el vector

$$\mathbf{y} = \begin{pmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ f(\mathbf{x}_3) \end{pmatrix} = \begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix}.$$
 Como subespacio aproximante tomamos $\mathbf{H} = \mathrm{Span}\{1, \mathbf{x}\}$. Entonces,

se trata de ortogonalizar la base de polinomios $\{1,x\}$ respecto al producto escalar anterior por el procedimiento de Gram-Schmidt. Para ello, llamamos $\{p_0(x), p_1(x)\}$ a la base ortogonal y hacemos:

- $p_0(x)=1$
- $p_1(x) = x + \alpha_0 \cdot p_0(x)$ y elegimos α_0 de forma que $p_0(x)$ y $p_1(x)$ sean ortogonales, es decir:

La base de polinomios ortogonales es por tanto: $\{1, x-3.83\}$. Entonces, la recta que mejor se ajusta a los datos (x_i, y_i) es :

$$F = \lambda_0 \cdot p_0(x) + \lambda_1 \cdot p_1(x) \text{ siendo los } \lambda_j = \frac{\langle \mathbf{y}, p_j(x) \rangle}{\|p_j(x)\|^2} \text{ j=0,1, es decir:}$$

$$\lambda_{0} = \frac{\langle \mathbf{y}, 1 \rangle}{\|1\|^{2}} = \frac{\sum_{i=1}^{3} y_{i}}{\sum_{i=1}^{3} 1} = \frac{10 + 20 + 30}{3} = \frac{60}{3} = 20$$

$$\lambda_{1} = \frac{\langle \mathbf{y}, p_{1}(\mathbf{x}) \rangle}{\|p_{1}(\mathbf{x})\|^{2}} = \frac{\sum_{i=1}^{3} y_{i} \cdot (\mathbf{x}_{i} - 3.83)}{\sum_{i=1}^{3} (\mathbf{x}_{i} - 3.83)^{2}} = \frac{10 \cdot (2 - 3.83) + 20 \cdot (3.5 - 3.83) + 30 \cdot (6 - 3.83)}{(2 - 3.83)^{2} + (3.5 - 3.83)^{2} + (6 - 3.83)^{2}} = \frac{40.2}{8.17}$$

La recta mejor aproximación obtenida es: $F = 20 + 4.92 \cdot (x - 3.83) = 4.92 \cdot x + 1.16$.